
Design patterns for code reuse in
HLS packet processing pipelines

Haggai Eran∗†, Lior Zeno∗, Zsolt István‡, and Mark Silberstein∗

∗Technion — Israel Institute of Technology
†Mellanox Technologies
‡IMDEA Software Institute

FCCM 2019 1

Network packet processing & FPGAs

● High-throughput
● Low latency
● Predictable performance
● Flexibility

E.g.

● AccelNet on Microsoft Azure
[Firestone et al. NSDI’18]

2

Network packet processing on FPGAs is hard!

● Require hardware design expertise
● Lack of software-like reusable libraries

Compared to CPU:

3

Click Modular Router

There are three great virtues
of a programmer: Laziness,
Impatience and Hubris.

Larry Wall

Creator of the Perl programming language

4

Why focus on high-level synthesis (HLS)?

● Abstract underlying hardware details
○ Automatic scheduling & pipelining
○ Reuse a design on different hardware

● High level language features (objects & polymorphism)

Focus on Xilinx Vivado HLS (C++)

5

High-level code (C++) RTL (Verilog) FPGA bitstream

How is HLS used for packet processing?

6

● Data-flow design
○ A fixed graph of independent elements
○ Operate on data when inputs are ready
○ Examples: [Blott ’13], [XAPP1209 ‘14], [Sidler ’15],

ClickNP [Li ’16].

Our methodology focuses on data-flow designs.

● Only a subset of C++ is synthesizable.
○ Virtual functions cannot be used.

● Strict interfaces and patterns for performance.

Why is it hard to build an HLS networking lib?

7

Our ntl library overcomes these problems.

● New methodology for developing reusable
data-flow HLS elements.

● Template class library that applies our
methodology for network packet processing
applications.

ntl: Networking Template Library

8

How to build reusable data-flow element pattern?

● Basic elements
○ C++ classes for each data-flow element
○ State kept as member variables
○ step() method implements functionality
○ Inline methods embedded in the caller
○ All interfaces are hls::stream (members/parameters)

● Reuse with customization via functional programming
● Composed through aggregation: reusable sub-graph.

9

Networking Template Library (ntl)
Class library of packet processing building blocks.

10

Category Classes

Header processing elements pop/push_header, push_suffix

Data-structures array, hash_table

Scheduler scheduler

Basic elements map, scan, fold, dup, zip, link

Specialized stream wrappers pack_stream, pfifo, stream<Tag>

Control-plane gateway

Networking Template Library (ntl)
Class library of packet processing building blocks.

11

Category Classes

Header processing elements pop/push_header, push_suffix

Data-structures array, hash_table

Scheduler scheduler

Basic elements map, scan, fold, dup, zip, link

Specialized stream wrappers pack_stream, pfifo, stream<Tag>

Control-plane gateway

Common operators in functional and reactive programming.

Modified to reset state for every packet.

Example: scan and fold

12

1 2 3 3 3 3

6 6

Input stream:

scan.step(input, plus())

Can serve basis for more complex operators.

fold.step(input, plus())

1 3 3 9

6 9

Fold & scan usage: parser example

13

counter

scan

input

dup zip

extract
header

fold

<idx, flit>
output

256b
flit

← packet →

fields

Programmable threshold FIFO

Dependency between FIFO check and write → decreased throughput

hls::stream replacement 14

Evaluation

● How does ntl compare against legacy HLS, P4?
● Can we build a relatively complex application with ntl?

Targeting Mellanox Innova Flex SmartNIC

● Xilinx Kintex UltraScale XCKU060 FPGA
● Shell dictates 216.25 MHz clock rate
● Mellanox ConnectX-4 Lx ASIC NIC

15

Stateless UDP firewall example
Use hash-table to classify packets.

16

Thpt. Latency LUTs FFs BRAM LoC

HLS/ntl 72 Mpps 25 cycles 5296 7179 12 218

HLS legacy 72 Mpps 16 cycles 4087 4287 12 593

P4 (SDNet 2018.2) 108 Mpps 211 cycles 34531 49042 193 92

Stateless UDP firewall example
Use hash-table to classify packets.

17

Thpt. Latency LUTs FFs BRAM LoC

HLS/ntl 72 Mpps 25 cycles 5296 7179 12 218

HLS legacy 72 Mpps 16 cycles 4087 4287 12 593

P4 (SDNet 2018.2) 108 Mpps 211 cycles 34531 49042 193 92

All exceed line rate (59.5 Mpps)

Stateless UDP firewall example
Use hash-table to classify packets.

18

Thpt. Latency LUTs FFs BRAM LoC

HLS/ntl 72 Mpps 25 cycles 5296 7179 12 218

HLS legacy 72 Mpps 16 cycles 4087 4287 12 593

P4 (SDNet 2018.2) 108 Mpps 211 cycles 34531 49042 193 92

x2.7 less lines of
code compared
to legacy

Stateless UDP firewall example
Use hash-table to classify packets.

19

Thpt. Latency LUTs FFs BRAM LoC

HLS/ntl 72 Mpps 25 cycles 5296 7179 12 218

HLS legacy 72 Mpps 16 cycles 4087 4287 12 593

P4 (SDNet 2018.2) 108 Mpps 211 cycles 34531 49042 193 92

ntl requires more LoC, but improves latency & area

Key-value store cache

20

● Cache memcached values on SmartNIC.
● GET hits served directly from cache.
● Multi-tenant support.

Uses the NICA framework [ATC’19]
Both NICA and KVS cache use ntl.

As seen on demo night:

Key-value store cache
Processes 16-byte GET hits at 40.3 Mtps.

For 75% hit rate: 9× compared to CPU-only.

21

Uses: hash tables, header processing, scheduler, control plane,
programmable FIFOs, ...

Related work: HLS methodology

● Xilinx application note [XAPP1209 ‘14]
We adapt a similar data-flow design, but improve code reuse.

● Improving high-level synthesis with decoupled data
structure optimization, [Zhao ’16].
We similarly wrap data-structures, but remain within C++.

● Module-per-Object: a human-driven methodology for
C++-based high-level synthesis design, [Silva ’19].
Complementary methodology; we share some aspects but
focus on data-flow packet processing and provide ntl. 22

Related work

Packet processing DSLs / libraries: P4 [Wang ’17], [Silva ’18],
[SDNet], ClickNP [Li ’16], Emu [Sultana ’17], Maxeler.
We focus on general purpose C++ for its flexibility.

Dataflow HLS designs: Image/video processing [Oezkan ‘17],
[OpenCV], HPC designs [de Fine Licht ‘18].
Higher order functions in HLS: [Thomas ‘16], [Richmond ‘18].
We apply similar techniques to packet processing.

23

Conclusion

We show a methodology for reusable packet processing in
HLS, and create reusable building blocks for line-rate
processing in the ntl library.

Try out ntl: https://github.com/acsl-technion/ntl

Thank you!

Questions?
24

https://github.com/acsl-technion/ntl

