Design patterns for code reuse in
HLS packet processing pipelines

Haggai Eran*', Lior Zeno*, Zsolt Istvan*, and Mark Silberstein®

*Technion — Israel Institute of Technology
"Mellanox Technologies
*IMDEA Software Institute

FCCM 2019

Network packet processing & FPGASs

High-throughput

Low latency

Predictable performance
Flexibility

E.g.

o AccelNet on Microsoft Azure Il Microsoft
[Firestone et al. NSDI'18] B Azure

Network packet processing on FPGAs is hard!

e Require hardware design expertise
e Lack of software-like reusable libraries

Compared to CPU:

@ -:_:ﬁio@ Click Modular Router

Bl Pl

#

I ; There are three great virtues
o of a programmer: Laziness,

Impatience and Hubris.

Larry Wall

Creator of the Perl programming language

Why focus on high-level synthesis (HLS)?

Abstract underlying hardware details

o Automatic scheduling & pipelining
o Reuse a design on different hardware

High level language features (objects & polymorphism)

Focus on Xilinx Vivado HLS (C++)

How is HLS used for packet processing?

e Data-flow design
o A fixed graph of independent elements
o Operate on data when inputs are ready
o Examples: [Blott "13], [XAPP1209 “14], [Sidler '15],
ClickNP [Li '16].

Our methodology focuses on data-flow designs.

Why is it hard to build an HLS networking lib?

Only a subset of C++ is synthesizable.
o Virtual functions cannot be used.
Strict interfaces and patterns for performance.

Our ntl library overcomes these problems.

ntl: Networking Template Library

e New methodology for developing reusable
data-flow HLS elements.

e Template class library that applies our
methodology for network packet processing
applications.

BN

How to build reusable data-flow element pattern?

e Basic elements

O

o O O

O

C++ classes for each data-flow element

State kept as member variables

step () method implements functionality

Inline methods embedded in the caller

All interfaces are hls: :stream (members/parameters)

e Reuse with customization via functional programming
e Composed through aggregation: reusable sub-graph.

Networking Template Library (nt1)

Class library of packet processing building blocks.

Header processing elements pop/push_header, push_suffix

Data-structures array, hash_table
Scheduler scheduler
Basic elements map, scan, fold, dup, zip, link

Specialized stream wrappers pack _stream, pfifo, stream<Tag>

Control-plane gateway

Networking Template Library (nt1)

Class library of packet processing building blocks.

Basic elements map, scan, fold, dup, zip, link

Specialized stream wrappers pack_stream, pfifo, stream<Tag>

11

Example: scan and fold

Common operators in functional and reactive programming.

Modified to reset state for every packet.

Input stream: m—‘—‘—q—

scan.step(input, plus())
fold.steplinput, plus()) e 2 ——

Can serve basis for more complex operators.

12

Fold & scan usage: parser example

256b |<— packet —>|

flit

4 I
counter

<idx, flit>

scan

extract

header ﬁeﬁ_

Programmable threshold FIFO

dependency

y

—

check output FIFO—>

processing

—>> write output

Dependency between FIFO check and write — decreased throughput

Producer Data FIFO |Consumer
- lll|
Producer index
CI updates
Consumer index (mmm Consumer index

hls::streamreplacement

14

Evaluation

e How does ntl compare against legacy HLS, P4?
e Can we build a relatively complex application with nt1?

Targeting Mellanox Innova Flex SmartNIC

e Xilinx Kintex UltraScale XCKU060 FPGA
e Shell dictates 216.25 MHz clock rate
e Mellanox ConnectX-4 Lx ASIC NIC

il UL
2 3 4 5 6 7 8 91011 12 13 14 15 16 17 18 19 20 21 22 26 23 24 25 27 28 29 3()m @

Stateless UDP firewall example

Use hash-table to classify packets.

HLS/ntl 72 Mpps 25cycles 5296 7179 12 218

HLS legacy 72 Mpps 16 cycles 4087 4287 12 593
ZAECIDNCIREEANN 108 Mpps | 211 cycles ' 34531 49042 193 92

16

Stateless UDP firewall example

Use hash-table to classify packets.

HLS/ntl
HLS legacy

P4 (SDNet 2018.2)

Thpt.

Latency

25 cycles

LUTs

FFs| BRAM

72 Mpps

16 cycles

4087

4287

12

593

108 Mpps

211 cycles

34531

49042

193

92

17

Stateless UDP firewall example

HLS/ntl
HLS legacy

P4 (SDNet 2018.2)

Use hash-table to classify packets.

Thpt.

Latency

25 cycles

LUTs

FFs| BRAM

72 Mpps

16 cycles

4087

4287

12

593

108 Mpps

211 cycles

34531

49042

193

92

18

Stateless UDP firewall example

Use hash-table to classify packets.

Thpt. Latency | LUTs FFs| BRAM

HLS/ntl 25 cycles
HLS legacy /2 Mpps| 16 cycles| 4087| 4287 12| 593
P4 (SDNet 2018.2) 211 cycles 193 92

19

Key-value store cache

e Cache memcached values on SmartNIC.
e GET hits served directly from cache.
e Multi-tenant support.

Uses the NICA framework [ATC’19]
Both NICA and KVS cache use nt1l.

Memcached server ... Client

Key-value store cache

Processes 16-byte GET hits at 40.3 Mtps.

For 75% hit rate: 9x compared to CPU-only.

Uses: hash tables, header processing, scheduler, control plane,
programmable FIFOs, ...

'Egress = — 3 memcached| |, g
o _S:; :SI 2 response <—-§ Port |||E|| B
Z | |2 = § \ | parser 5_5) table E T
s @) memcached -
app. logic
“Ingress = memcached j
5| e Port ||| reques i g ||g| == *g
Z ||| 2] table parser MMU 5 ||| == ||| =
Al | A |2 ==
- DRAM A

- [Ax14-Lite

Gateway
Legend:
" [1Reusable blocks

= [_] Custom elements

[Vendor shell & Verilog

21

Related work: HLS methodology

e Xilinx application note [XAPP1209 ‘14]
We adapt a similar data-flow design, but improve code reuse.
e Improving high-level synthesis with decoupled data
structure optimization, [Zhao '16].
We similarly wrap data-structures, but remain within C++.
e Module-per-Object: a human-driven methodology for
C++-based high-level synthesis design, [Silva '19].

Complementary methodology; we share some aspects but
focus on data-flow packet processing and provide nt1.

22

Related work

Packet processing DSLs / libraries: P4 [Wang '17], [Silva '18],
[SDNet], ClickNP [Li '16], Emu [Sultana '17], Maxeler.
We focus on general purpose C++ for its flexibility.

Dataflow HLS designs: Image/video processing [Oezkan “17],
[OpenCV], HPC designs [de Fine Licht “18].

Higher order functions in HLS: [Thomas “16], [Richmond “18].
We apply similar techniques to packet processing.

Conclusion

We show a methodology for reusable packet processing in
HLS, and create reusable building blocks for line-rate
processing in the ntl library.

Try out ntl: https://github.com/acsl-technion/ntl)

Thank you!

Questions?

https://github.com/acsl-technion/ntl

