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ABSTRACT
We propose a new system design for connecting hardware and
FPGA accelerators to the network, allowing the accelerator to di-
rectly control commodity Network Interface Cards (NICs) without
using the CPU. This enables us to solve the key challenge of leverag-
ing existing NIC hardware offloads such as virtualization, tunneling,
and RDMA for accelerator networking. Our approach supports a
diverse set of use cases, from direct network access for disaggre-
gated accelerators to inline-acceleration of the network stack, all
without the complex networking logic in the accelerator.

To demonstrate the feasibility of this approach, we build Flex-
Driver (FLD), an on-accelerator hardware module that implements
a NIC data-plane driver. Our main technical contribution is a mech-
anism that compresses the NIC control structures by two orders
of magnitude, allowing FLD to achieve high networking scalabil-
ity with low die area cost and no bandwidth interference with the
accelerator logic.

The prototype forNVIDIA Innova-2 FPGA SmartNICs showcases
our design’s utility for three different accelerators: a disaggregated
LTE cipher, an IP-defragmentation inline accelerator, and an IoT
cryptographic-token authentication offload. These accelerators
reach 25Gbps line rate and leverage the NIC for RDMA processing,
VXLAN tunneling, and traffic shaping without CPU involvement.

CCS CONCEPTS
•Hardware→Hardware accelerators;Networkinghardware;
•Computer systems organization→Heterogeneous (hybrid)
systems; Distributed architectures.
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accelerator networking, accelerator disaggregation, network func-
tion acceleration
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1 INTRODUCTION
Modern data centers rely on special-purpose accelerators to achieve
high performance for AI tasks [17, 75], in networking [4, 32, 99]
and storage [4] infrastructures, and also offer general-purpose ac-
celerators to their clients [3, 5, 19, 71].

From the perspective of accelerator developers, these diverse
workloads pose two seemingly unrelated requirements. First, there
is a growing need to support direct network connectivity with accel-
erators. This is essential, for example, in disaggregated data cen-
ters where network-accessible accelerators are pooled together [1,
17, 37], as well as in distributed computing applications such as
DNN training [68, 75]. Second, as network growth rate outpaces
CPU capacity scaling, data-centers require inline acceleration of
packet processing and network function virtualization applications
to achieve high performance without wasting their tenants’ CPU
resources [32, 65, 94, 98]. In both scenarios, the efficiency of the
accelerator’s interaction with the network is key to achieving the
performance and power goals of the whole system. In this work,
we demonstrate a unified architectural approach that achieves this
goal.

The primary challenge stems from the complex network stack
logic, which involves multiple and diverse software layers tradition-
ally running on the CPU and is assisted by a wealth of hardware
offloads in the network adapter (NIC). To either connect to the
network or accelerate any of its steps, an accelerator must inter-
operate with this logic efficiently, under strict performance and
architectural constraints.

Today’s systems use one of the following three approaches to
deal with this challenge:

(a) A CPU-mediated design [16, 57] relies on CPU mediation
between the accelerator and a network stack running on the
host. Sometimes the data path is optimized with direct data

1115

https://orcid.org/0000-0002-2159-9046
https://orcid.org/0000-0001-9659-068X
https://doi.org/10.1145/3503222.3507776
https://doi.org/10.1145/3503222.3507776
https://doi.org/10.1145/3503222.3507776


ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland H. Eran, M. Fudim, G. Malka, G. Shalom, N. Cohen, A. Hermony, D. Levi, L. Liss, and M. Silberstein

placement into accelerator memory, but the host retains the
control.

(b) An accelerator-hosted design [68, 75] moves the entire physi-
cal NIC into the accelerator. It is prevalent in FPGA NICs [33,
103, 125], commercial SmartNICs [46, 73, 122], and in network-
attached FPGA accelerators [14, 30, 48, 49, 58, 121]. These
feature a full, on-FPGA implementation of the networking
stack [97, 102] from the physical layer to the application.

(c) A Bump-in-the-Wire (BITW) design, broadly used in FPGA-
equipped SmartNICs, such as Microsoft Catapult [32], In-
nova [69], and Intel’s PAC N3000 [45], places an accelerator
between the NIC and the network. It shares many of the
characteristics of accelerator-hosted design but reuses some
NIC components for communicating with the host.

Our analysis of these designs identifies a three-way trade-off
between the chip area overheads of the on-accelerator networking
layer, host CPU overheads to support accelerator networking, and
the NIC-accelerated network stack features made available to ac-
celerators (cf. § 3). The existing approaches can only obtain two
out of the three desired qualities (Figure 1).

We present a new system architecture, which explores an im-
proved design point by enabling direct control of a NIC by an ac-
celerator. We demonstrate both how this architecture enables ac-
celerators to use advanced NIC offloads for networking and how
existing network stacks can integrate custom inline accelerators,
all with a low on-accelerator area footprint and no CPU overheads.

The main idea is to let the accelerator control the NIC via its PCI-
Express (PCIe) control interface, thus exposing to the accelerator the
same NIC functions as those made available to CPU software by the
standard NIC driver. At the core of our design is a hardware module
called FlexDriver (FLD), which integrates into the accelerator and
operates the NIC’s PCIe interfaces independent of the host.

This design supports diverse application scenarios. By using ad-
vanced NIC transport offloads, such as RDMA, the accelerator can
be easily disaggregated and communicate with other RDMA end-
points in distributed applications. For inline network stack acceler-
ation tasks such as IP defragmentation, the NIC’s steering engine
can forward packets to the accelerator, integrating the processing
steps performed on the accelerator with other NIC offloads. Last,
the NIC’s flow steering, bandwidth shaping, and packet tagging
mechanisms help virtualize accelerators, removing the associated
complexity from the accelerator implementation.

While conceptually simple, this idea poses a few challenges
which our work addresses.

Driver partitioning. In a nutshell, FLD should implement a NIC
driver. However, network drivers are highly sophisticated and
device-specific. A verbatim hardware port of the driver logic would
not only be difficult to design and maintain but would dramatically
increase the FLD area footprint on the accelerator. Instead, we
carefully partition the driver such that hardware only implements
performance-critical data-plane components, while the control-
plane, forming most of the driver complexity, runs on the CPU
(§ 4.1).

Memory requirements and scaling. To achieve high performance,
the accelerators must store NIC control data structures such as

CPU VN2F

Bump-in-the-wire Innova-1 shell

NICA

AccelNet
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Corundum
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Small die 
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Figure 1: Trade-offs between accelerator area footprint for
networking, use of NIC-accelerated features, and CPU over-
heads.

Rx/Tx descriptor rings and network buffers. Unfortunately, our
analysis shows that such structures may occupy tens of MiBs of
memory, especially for more connections and queues (§ 4.3). If
stored in the accelerator’s DRAM, however, accessing them from
FLD would interfere with the accelerator’s memory accesses. Our
solution employs a novel hardware mechanism that generates NIC
control structures on-the-fly in hardware in response to the NIC’s
PCIe requests, instead of keeping these structures in their original
form in memory. This mechanism shrinks the memory require-
ments by over 100×, allowing the NIC control structures to easily
fit into FLD-dedicated on-die memory even when provisioned for
400Gbps future networks and 2K Rx/Tx queues (§ 5.2).

Software abstractions. FLD retrofits existing RDMA and DPDK
software abstractions to simplify integration of FLD-based acceler-
ators with existing systems (§ 5.3).

We prototype FLD and the associated system software by using
a 25Gbps Innova-2 SmartNIC [78], which features an FPGA device
and an NVIDIA ConnectX-5 NIC interconnected via PCIe. FLD
achieves close to line-rate throughput, utilizing FPGA area on-par
or smaller than previously published full network-stack/NIC im-
plementations on FPGA, while supporting much richer network
processing functionality. We build and evaluate three sample ac-
celerators to demonstrate the versatility and performance of our
approach: a disaggregated accelerator for an LTE cipher exposed via
RDMA, an inline IP defragmentation accelerator used in conjunc-
tion with the NIC’s native VXLAN decapsulation and RSS offloads,
and a virtualized IoT authentication accelerator, which leverages
the NIC’s flow classification and QoS logic.

Finally, our evaluation shows that these accelerators achieve
high performance and efficiency while affording relatively simple
hardware design, thanks to FLD-enabled NIC offloads.

2 BACKGROUND
We briefly survey the background of NIC offloads and drivers.

2.1 NIC Offloads
NIC vendors implement hardware-accelerated features to offload
packet processing tasks from the CPU. These include stateless
offloads, such as checksumming, TCP segmentation, receive-side
scaling (RSS), and receive flow steering (RFS) [109]. Some NICs
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implement a transport layer in hardware through remote direct
memory access (RDMA [115]).

To let the network stack use the offloads, NICs expose a con-
trol interface over PCIe and add metadata to their data-plane PCIe
interface.

Multiple offloads can be chained together. For example, receive
flow steering can direct traffic to the correct core after IPSec has
decrypted a received packet. However, the chaining requires that all
the tasks in the chain prefix (suffix for transmit) are offloadable (“all-
or-nothing offloads” [32]). For example, if the decryption offload is
not available on the NIC and needs to be done in software, invoking
RFS offload after the packet has left the NIC would be impossible.
In FLD, we overcome this problem and allow interleaving packet
processing on the accelerator with NIC-offloadable tasks.

2.2 NIC Driver Structure
A NIC driver performs two types of tasks: the control plane tasks,
e.g., initialization, teardown, link management, and queue configu-
ration; and the data plane tasks, e.g., packet transmission, posting
of receive buffers, and processing of completion notifications.

Driver data-plane tasks commonly use host memory to exchange
buffers and completions with the NIC over producer-consumer ring
data structures. Typically, the driver transmits packets by storing
descriptors in a transmit ring pointing to packet buffers, increasing
a producer index, and notifying the NIC using a memory-mapped
I/O (MMIO) operation (doorbell). The driver releases the buffers
after receiving a completion indication from the NIC. Receiving
packets is similar but may skip the MMIO notification.

Transmit and completion descriptors may include metadata ac-
companying the packet, describing requested offloads (descriptors)
or offload results from the NIC (completions). For reliable trans-
ports, completions indicate that an entire message (rather than a
packet) has been reliably sent or received.

When operating multiple receive queues, reserving data buffers
separately for each queue can result in wasted memory due to
fragmentation. To mitigate this situation, NICs allow sharing
their data buffers through a shared receive queue (SRQ) data struc-
ture [40, 108], where multiple receive queues utilize a single mem-
ory pool. Similarly, completion queues can be shared among differ-
ent transmit and receive queues.

2.3 Match-Action Model
Some NICs provide virtualization support, appearing as several
virtual NICs (vNICs) that can be dedicated to virtual machines
(VMs) for improved performance [24, 47, 59, 79]. The vNICs are
connected to the network by an Embedded Switch (eSwitch). For
steering packets to the correct VM, NICs use flexible match-action
rules [12, 29, 70], managed by the hypervisor. These rules match
packets to their destination VM and route them to the correct virtual
port (vPort) of the eSwitch. The eSwitch rules can also perform
header manipulations such as en/decapsulation or IPSec tunneling.

After a packet arrives at a vPort, the NIC processes it usingmatch-
action tables programmed for that port by the guest OS or by a
user-space networking application (e.g., using Linux TC filters [39]
or DPDK’s rte_flow [25]). Packets transmitted by the guest undergo

the reverse path, going through guest match-action tables first and
then the eSwitch rules.

2.4 PCI-Express
PCI-Express (PCIe) is a high-speed local interconnect commonly
used to connect peripheral devices to CPUs [51]. In PCIe, each
message includes an address field, and the platform configures each
endpoint to be associated with parts of the system’s address space
through base address registers (BARs) on the endpoint. The term
BAR is commonly used to denote the PCIe address space region
that belongs to the endpoint itself. PCIe allows endpoints to read
and write from other peripherals through peer-to-peer transactions
bypassing the CPU, improving performance for a variety of uses [6,
7, 10, 76, 77].

3 ACCELERATOR NETWORKING
ARCHITECTURES

Table 1 shows a detailed comparison of several FPGA-based ac-
celerator architectures categorized by their network stack design
(Figure 2) using representative prior works.

CPU-Mediated. VN2F [16] exposes an Ethernet interface to the
accelerators running on AWS F1 FPGAs while using CPUs to trans-
fer data between a NIC and an FPGA. The accelerator can employ
all the features of the CPU network stack, including NIC hardware
offloads, while occupying a relatively small area (see Table 1). How-
ever, the CPU is involved in every network transaction, limiting scal-
ability, hurting performance, and wasting CPU cycles [22, 60, 91].

Accelerator-Hosted. Corundum [33] and StRoM [103] are full NIC
implementations that can be used on FPGA-based accelerators as
an integral part of their designs. They are representative of FPGA
designs that connect to the network via their integrated Ethernet
ports and implement all or parts of the network stack or NIC func-
tionality in programmable logic [46, 73, 122, 125]. Similarly, some
machine learning accelerators use integrated NICs [68, 75].

Such solutions do not involve the CPU but use a large die area and
programmable logic resources for the boilerplate communication
tasks, and usually support fewer network stack features than a NIC.
Any feature can be added to the design, but only with an additional
area and development effort. For example, adding tunneling support
would increase the LUT consumption of Corundum by 30% [96].

Bump-in-the-Wire (BITW). FPGA-based SmartNICs are commonly
used for inline acceleration of the network stack [32, 45, 69]. The
BITW design combines a NIC ASIC with an FPGA, and it thus saves
programmable logic resources by using some of the NIC-supported
offloads. NICA [28], for example, leverages the NIC’s DMA to the
host and SR-IOV.

Unfortunately, as a BITW design connects the accelerator to
the NIC’s network port, it cannot use some of the NIC offloads
efficiently. For example, RDMA-capable NICs implement the trans-
port layer in hardware, but using it requires one to access NIC’s
PCIe interface. Thus, a BITW accelerator cannot use it to send
RDMA messages. Similarly, in inline packet processing applica-
tions, ingress packets are first processed by the accelerator, so they
cannot utilize NIC offloads such as tunneling decapsulation or IPSec
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Table 1: FPGA-based networking architectures.a – supported, – supported only between host and NIC, é– unsupported.

Hardware Utilization Network features

Category Solution Gbps LUT FF BRAM URAM
Stateless
offloads Tunneling

Hardware
Transport

CPU-mediated VN2F [16] 10 5.7K 1.1K 233   N/A

Accelerator-hosted Corundum [33] 25 66.7K 71.7K 239 20
 é é100 62.4K 76.8K 331 20

StRoM [103] 10 92 K 115 K 181
 é 100 122 K 214 K 402

BITW NICA [28] 40 232 K 299 K 584  
Innova-1 shell [28] 40 169 K 212 K 152  

FlexDriver 100b 62 K 89 K 79 44  

aAll implementations are on Xilinx UltraScale/UltraScale+ family for a fair comparison.
bOur FLD module supports 100Gbps, but the PCIe link is 50Gbps, and the port speed is 25Gbps.
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Figure 2: Accelerator-to-network designs: (a) CPU-mediated (b) Accelerator-hosted (c) Bump-in-the-Wire (BITW), and (d) FLD.

decryption. This is why NICA has to reimplement flow steering and
QoS traffic classes, among others, leading to its large area footprint.

FlexDriver: This Work. FlexDriver combines the benefits of all
three designs: with the direct access to the accelerator from the NIC
and from the NIC to the accelerator, it enables inline offloads akin
to the BITW and accelerator-hosted designs, while also allowing
accelerators to use all NIC offloads, yet without the CPU overheads
of a CPU-mediated design.

4 DESIGN CONSIDERATIONS
We aim to achieve the following goals:

(a) enable low-latency/high-bandwidth networking support
for accelerators;

(b) minimize CPU overheads of accelerator networking;
(c) employ unaltered commodity NICs while utilizing NIC

offloads;
(d) minimize FLD’s area footprint on the accelerator die;
(e) facilitate integration with simple fixed-function accelerators

using an easy-to-use hardware interface; and
(f) reuse existing software, network stack, and drivers, and in-

teroperate with existing application software, such as RDMA
Verbs and DPDK offload interface rte_flow.

At a high level, FLD aims to enable accelerators to access NICs
over PCIe directly. This requires the functionality that the OS NIC
driver traditionally provides. However, porting drivers to hardware
verbatim is not viable due to their complexity and the resulting

large area footprint of such implementation. Instead, our approach
is to partition the driver tasks among the CPU and the accelerator
and redesign them to meet stringent hardware resource constraints.

4.1 Division of Labor
Tominimize the FLD footprint in the accelerator, we choose to main-
tain complex control logic on the host CPU while implementing
only the performance-critical data-plane functionality in hardware.
Thus, FLD handles the following main tasks: (a) managing trans-
mit/receive queues, (b) allocating data buffers, and (c) operating the
NIC data-plane PCIe interfaces. We discuss the hardware design in
§ 5.1. We leave tasks like queue initialization/teardown, connection
establishment, and NIC pipeline configuration for software (§ 5.3).

4.2 Location of NIC Control Structures
NIC Control Structures in Host Memory? As explained in § 2.2, a
NIC interacts with its CPU driver over a host memory region. But
using host memory in the FLD design has several disadvantages.
First, NIC–accelerator traffic would compete for PCIe bandwidth
with other peripherals, and crucially, with other accelerators using
FLD, limiting the solution’s scalability. Second, it would pollute
CPU caches [31, 74], and compete over memory interfaces and SMP
interconnects [105].

NIC Control Structures in Accelerator DRAM? Some accelerators
are equipped with local DRAM, which can host the NIC control
structures. Compared to host memory, this approach is known to
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Table 2: NIC driver memory analysis parameters.

(a) Parameters used in the analysis.

Description Variable Value

Bandwidth B 100Gbps
Min./max. packet size Mmin/Mmax 256 B/16 KiB
Lifetime Lrx /Ltx 5/25 µs
No. transmit queues Nq 512

Max. packet rate R = B
Mmin+20 B 45Mpps

Min. TX descriptors Ntxdesc = ⌈RLtx ⌉ 1133
Min. RX descriptors Nrxdesc = ⌈RLrx ⌉ 227
TX Bandwidth × delay Stxbdp = BLtx 305 KiB
RX Bandwidth × delay Srxbdp = BLrx 61 KiB

(b) ConnectX/FLD parameters.

Description Var. Software FLD

Tx. descriptor size Stxdesc 64 B 8 B
Rx. descriptor size Srxdesc 16 B -
Completion queue entry Scqe 64 B 15 B
Producer index Spi 4 B 4 B

improve the accelerator networking performance [22, 91]. However,
doing so may cause interference between the accelerator and FLD
memory accesses. With DRAM-bandwidth limited [102], adding
another memory consumer would not be possible, as is the case for
the Innova-2 SmartNIC we use for prototyping FLD. Further, accel-
erators use a custom memory hierarchy, and accessing it coherently
for network management tasks requires additional synchronization
operations [81, 91] resulting in suboptimal performance.

Therefore, we store NIC-control data structures on accelerator
dedicated on-chip memory as part of the FLD module.

4.3 Memory Requirements for Control
Structures

Storing NIC control structures on-chip in the structure as in CPU
memory might seem to challenge our goal to conserve the accel-
erator area. Indeed, as we show next, scaling to a large number of
queues or high bandwidth would require large amounts of memory
in conventional drivers, making the choice of on-die storage for
FLD impractical. Later (§5.2), we show how to shrink the memory
requirements significantly to make this idea practical.

We use the ConnectX-5 NIC software driver to examine the
amount of memory consumed by NIC control structures [27].

Transmit/Receive Buffers. Tomeet the target bandwidth or packet
rate with a single queue, the driver’s queue depth has to cover the
lifetime of each buffer, multiplied by the expected line rate. For
transmission of Ethernet frames, the lifetime includes the time
from the buffer allocation until it is transmitted and a completion
notification is returned. For RDMA reliable connections, the NIC
may retransmit the buffer, and so its lifetime includes the time for
the receiver to return an acknowledgment. Receive buffer lifetime
spans the time from when the NIC starts filling out a packet buffer

until the packet is processed or copied elsewhere by the application
or the network stack.

Table 2a shows the parameters of a sample plausible configura-
tion. We assume 100Gbps line-rate and 25 µs lifetime (matching
Azure’s reported 99th percentile latency [32]). We use 5 µs latency
for receive, assuming the network stack recycles buffers faster. We
pick maximal message size large enough to accumulate at least half
of the common flow sizes reported in [116]. The number of queues
(512) is provisioned for a disaggregated accelerator connected via
the NIC, concurrently serving each processor core in a 32 nodes
cluster, each node with 16 cores.

Based on these parameters we calculate the minimum num-
ber of descriptors Ntx/rxdesc , and bandwidth-delay product (BDP)
Stx/rxbdp representing the lower-bound on the buffer size required
to meet line-rate (see Table 2a).

Fragmentation inflates the memory requirements. Basic NIC
interfaces for receive-queue management require buffers sized for
the maximum packet size. However, some NICs allow more effi-
cient use of memory, and we utilize that in FLD (§ 5.2). For transmit
buffers, NICs do notmandate the buffer size, and it is up to the driver
software and the network stack to deal with potential fragmenta-
tion. Accordingly, many high-performance implementations such
as DPDKmay use multiple memory pools provisioned for the worst-
case traffic pattern with large buffers, thus trading the increased
memory consumption for improved performance. Therefore, the
resulting buffer sizes are much larger than the BDP. For example,
for Tx, Stxdata = 17.7MiB (Table 3) vs. Stxbdp = 305 KiB.

Transmit Ring Size. When operating multiple queues, buffers can
be shared among them, as not all queues can transmit/receive at
the same time, and the overall traffic is bounded by the line rate.
Thus, buffer sharing enables scaling the number of queues. Receive
buffers can use a shared receive queue and completion queue to
share the buffer pool and the descriptor ring itself. Transmit data
buffers may also be shared but require a per-queue ring structure.
Thus, the memory required for transmit rings grows rapidly with
the number of queues, up to Stxq = 64MiB in our example (Table 3).

Other Structures. In addition to the descriptor rings, the driver
keeps per-queue producer indices, but with only 4 B the effect on
scalability is negligible. The completion queues and the receive
ring need only to scale with the overall number of descriptors, as
they are shared. We assume one completion queue for all transmit
queues and one for receive.

To summarize, our example leads to approximately 85.3MiB allo-
cated for NIC–driver interaction. For on-die storage on accelerators,
such capacity is too large to require. In particular, the Innova-2’s
FPGA device we use for prototyping has only 10.05MiB overall
available capacity.

In FLD we manage to dramatically reduce memory requirements,
by 105× for Table 3’s example. We discuss our memory reduction
techniques in detail in § 5.2.

4.4 Software Stack
For software, our goal is to extend existing abstractions naturally,
but defining suitable abstractions for FLD operation is challenging.
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Table 3: Memory analysis for NIC–driver communication with and without FLD optimizations. f (n) = 2⌈log2 n⌉ rounds alloca-
tions to a larger power of 2. Sxlt∗ are the translation table sizes, which are <33KiB. See details in [27].

Formula to compute Example

Description Var. Software FLD Software FLD Shrink ratio

Tx. rings size Stxq Nq f (Ntxdesc ) Stxdesc f (Ntxdesc ) Stxdesc + SxltT x 64MiB 32KiB ×2080
Tx. buffer size Stxdata MmaxNtxdesc 2Stxbdp + SxltData 17.7MiB 643KiB ×28.2
Rx. buffer size Srxdata MmaxNrxdesc 2Srxbdp 3.5MiB 122 KiB ×29.8
Completion queue size Scq f (Ntxdesc + Nrxdesc ) Scqe 144 KiB 33.75 KiB ×4.27
Rx. ring size Ssrq f (Ndesc ) Srxdesc - 4 KiB -
Total producer index size Spitot

(
Nq + 1

)
Spi 2052 B 2052 B ×1

Total S∗data + Stxq + Ssrq + Spitot + Scq 85.3MiB 832.7 KiB ×105

FLD provides a single hardware module design for both inline net-
work acceleration and accelerator networking, yet software support
for these two scenarios differs substantially: the former requires
marking flows with match-action tables, whereas the latter needs
setting up an RDMA Queue-Pair (QP) on the NIC.

For inline acceleration, existing packet processing applications
use the match-action tables abstraction to define how the NIC han-
dles ingress and egress packets. We seek to extend this abstraction
with new acceleration actions, which move packets to the accel-
erator and back to the match-action pipeline behind the scenes.
RDMA applications use the QP notion to define both a transport
endpoint and a NIC software interface, while with FLD, we need
them separated.

We discuss the software design in § 5.3.

4.5 Accelerator Virtualization and Isolation
Cloud environments benefit from sharing accelerators among mul-
tiple tenants [20, 28, 50, 62]. As FLD relies on PCIe peer-to-peer
communication, a naive method of achieving this goal would be to
implement SR-IOV on FLD, exposing multiple virtual functions and
assigning each to its client VM. However, such an approach can
cost additional hardware resources for implementing the additional
virtualization logic in hardware and keep an additional per-function
state. Instead, FLD exposes a single PCIe function and relies on
NIC virtualization support (§ 5.4).

5 DESIGN
FLD’s design allows direct interaction between accelerators and
the NIC. FLD is embedded into the accelerator (on-die) and commu-
nicates with the NIC via peer-to-peer PCIe. The high-level design
is shown in Figure 2d.

FLD forms a common hardware substrate, but the control plane
software exposes different interfaces for different modes of opera-
tion. For accelerator disaggregation and inter-accelerator network-
ing, we introduce the FLD-R interface, which utilizes the RDMA
hardware transport implemented by the NIC. This interface al-
lows accelerators to perform RDMA operations directly. For inline
acceleration of network stack tasks, our FLD-E interface provides
accelerators with a raw Ethernet interface, leveraging stateless
offloads and NIC match-action rules.

Accelerator unit

FLD BAR

Packet streamPacket stream

Rx 
buffer 
pool

Credits

Rx ring 
manager

Address translation

Tx buffer 
pool

Tx ring manager

CSRs

Data CQ CQ PIs WQsPI Data

CSR 
intf.

CSR intf.

Proprietary interface

Rx Tx

Figure 3: FLD hardware functional diagram.

5.1 Hardware Design
Figure 3 shows the high-level design of FLD hardware. FLD’s ad-
dress space, exposed over its PCIe BAR, is partitioned according
to the various NIC data structures. A proprietary interface layer
converts between the NIC’s vendor-specific data structures and the
FLD’s internal formats.

Internally, FLD independently operates Tx and Rx modules. Both
include buffer pools and a ring manager, which handles producer
index accesses, descriptor accesses (for Tx), and completions writes.
Ring managers maintain reference counts on their buffer pool and
recycle buffers as needed.

The Tx side’s address translation layer enables memory opti-
mizations described in the next section.

5.2 FLD Memory Optimizations
The key observation for reducing FLD’s memory requirements is
that as a hardware device communicating over PCIe, FLD does not
need to store every queue in the exact format expected by the NIC.
Instead, it handles PCIe reads and writes with custom logic, gener-
ating the required data structures on-the-fly while keeping the data
structures in a more space-optimized form under the hood. This
opens up the opportunity for several optimizations that dramatically
reduce the memory requirements compared to software.

Compression. The NIC descriptor and completion formats are
more general than FLD’s needs. For example, the FLD transmit
queues always point to on-chip buffers, which are addressed with
few bits, whereas the NIC interface accepts a 64-bit address. FLD
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internally uses a compressed descriptor/completion representation
and converts them as needed.

Address Translation. Even with compression, scaling to a large
number of queues would require a large Tx ring (Stxq , Table 3).
To reduce it, we virtualize accesses to the descriptor ring region
through an address translation mechanism. FLD maps PCIe reads
from the queue’s virtual address into a smaller physical array of
descriptors. We use a 4-bank cuckoo hash-table (load factor 1

2 ) to
store a shared pool of Ntxdesc descriptors. The hash table adds a
15.5 KiB overhead, but overall results in a 2080× reduction.

A similar translation table allows sharing transmit buffers be-
longing to different queues at fine granularity with bounded frag-
mentation. We map a per-queue virtual address range into the data
buffer with another translation table taking 33 KiB, resulting in an
overall 28.2× reduction.

Cuckoo hashing [86] provides constant-time lookup, resolving
collisions by moving entries to a different location. In our imple-
mentation, when an inserted new entry collides, it evicts some old
entry to a stash (containing four entries). The stash then tries to
insert the evicted entry to another bank, and the process proceeds
till success. If the stash fills up, insertion of a new entry stalls till
some entry is released. To prevent backpressure, we double the
table size, guaranteeing convergence.

MPRQ. We reduce receive-buffer fragmentation by leveraging
suitable NIC mechanisms, such as multi-packet receive queues [26,
53] or packets spanning multiple buffers [43]. Specifically, the
ConnectX-5 NIC we use in our prototype features multi-packet
receive queues (MPRQs), receiving multiple packets in each buffer.
MPRQs may still suffer from fragmentation but only up to half of
the buffer size.

Receive Ring in Host Memory. We store the shared receive ring
in host memory by designing FLD to recycle receive buffers in the
same order initially posted. FLD can thus leave the descriptors
unmodified.

Table 3 outlines the overall memory savings.

5.2.1 Scalability Analysis. We analyze the memory scaling of both
FLD and standard software for higher line-rates and numbers of
transmit queues while using the rest of the parameters we used in
the previous examples (Table 2a). Figure 4 shows that FLD scales

Accelerator FLD

SW PCIe P2P

Ethernet
Software 
interfaceNetwork stackFLD kernel driver

HW

FLD runtime library

Control plane

NIC

Figure 5: FLD high-level software design.

well for 400Gbps and 2048 transmit queues, whereas the memory
requirements of the standard driver increase by orders of magni-
tude, clearly demonstrating the importance of the aforementioned
memory optimizations.

5.3 Software Control Plane
We show the main components of an FLD application in Figure 5.
A control plane application running on the host CPU manages
FLD through a shared FLD runtime library and a kernel driver to
abstract the setup of FLD queues while utilizing the NIC’s standard
abstractions to configure how these queues operate.

FLD Runtime Library. FLD control-plane applications mainly
use the runtime library to bind FLD and the NIC together. The
application uses the library to create FLD queues (RDMA QPs or
Ethernet transmit/receive queues) on behalf of the accelerator and
uses the abstractions below to configure them.

The QP abstraction provided by the existing RDMA Verbs API
serves as both a transport endpoint abstraction and an asynchro-
nous I/O interface. It includes methods for, e.g., connecting a QP
to a remote endpoint, but also for posting buffers for transmission.
FLD-R QPs split these tasks: the accelerator uses it to transmit
or receive data, while software only addresses its properties as a
transport endpoint.

At a low level, the FLD runtime library allows the creation of
Ethernet transmit and receive queues. Like the QP abstraction, such
a queue can be associated with network flows throughmatch-action
rules as described above. However, this low-level abstraction com-
plicates application development, as it requires developers to create
additional rules to differentiate FLD packets from the remaining
traffic explicitly.

FLD-E High-Level Abstraction. To simplify FLD-E applications,
we extend the NIC’s match-action APIs by adding new actions
to those available today (§ 2.3). The new actions send packets to
the accelerator along with appropriate metadata identifying the
associated VM and the following table to process packets after
acceleration. After processing, the accelerator returns the packet to
the NIC, tagged with the next-table ID so that the NIC can resume
processing the packet where the acceleration action took off.

FLD-R High-Level Abstraction. FLD-R applications can use our
control plane as a standard RDMA server and have clients create
RDMA connections that bind directly to FLD-R QPs.

ErrorHandling. As the CPU control planemanages NIC resources
on behalf of the accelerator, it receives asynchronous error mes-
sages the NIC driver reports, similar to CPU applications. FLD
hardware detects errors in the data plane and reports them to soft-
ware through its kernel driver. Like RDMA Verbs, we leave error
recovery to the control-plane application.
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5.4 Virtualization and Isolation
Reusing the NIC I/O-virtualization features saves accelerator re-
sources otherwise necessary to implement SR-IOV. To enable accel-
erator virtualization, the control plane configures theNIC to identify
each message’s tenant. FLD-R simply associates each queue with
a single user, but for FLD-E, we allow more flexibility. Designers
may prefer using queues to prioritize traffic while sharing a queue
among multiple tenants.

To isolate and identify different flows, an FLD-E control-plane
configures the NIC to tag ingress messages with a context ID associ-
ated with the tenant, based on their packet headers. FLD forwards
this ID to the accelerator within the packet metadata. The accelera-
tor also tags packets it sends, so the NIC can associate them with
the appropriate tenant.

This design implies that untrusted VMs cannot control the con-
text ID tag and require a trusted entity, e.g., the FLD-E control plane,
to validate any match-action rules that they attempt to install.

5.5 FLD–Accelerator Interface
We design the interface between an accelerator and FLD around
two AXI4-Stream buses, for receiving and transmitting packets.
Such an interface is common for networking IP; for example, Xilinx
Ethernet IP [123] supports a similar interface.

Although AXI4-Streams include flow control signals, we limit
how accelerators may use them to bound the FLD buffer require-
ments and prevent the buffers from overflowing. When receiving
data, the accelerator is not allowed to generate backpressure to-
wards FLD, as that would eventually cause FLD buffers to fill up,
and the NIC would drop incoming packets (for Ethernet) or stop
traffic with transport-layer flow-control (for RDMA). Importantly,
this would cause head-of-line blocking and may affect unrelated
queues.

Instead, we expect accelerators to either meet line-rate, use
application-layer flow-control to prevent incoming traffic from ex-
ceeding the accelerator receive throughput, or selectively drop
exceeding traffic on their own.

When transmitting, each queue may progress at a different
rate due to NIC prioritization (e.g., ETS) or transport-layer flow-
/congestion-control. Therefore, we provide per-queue backpressure
to the accelerator in the form of a credit interface. Accelerators
may use it to monitor the per-queue tx data buffer and descriptor
utilization and allocate available resources among the queues as
they prefer.

Packets exchanged over the streaming buses are accompanied
by metadata, such as the queue ID and context ID. Additionally, the
metadata includes information derived from the completion notifi-
cation the NIC provides with received packets, enabling the use of
offloads such as checksum validation, packet parsing, classification,
and RSS.

6 IMPLEMENTATION
We implement FLD as programmable logic on an NVIDIA Innova-2
Flex Open Programmable SmartNIC [78]. The Innova-2 includes
both an NVIDIA ConnectX-5 NIC, and a Xilinx Kintex UltraScale+
FPGA (XCKU15P). The NIC embeds a PCIe switch and connects

Table 4: Software lines of code [21] for different compo-
nents.

Component LOC

FLD runtime library 3753
FLD kernel driver 1137

FLD-E control-plane 1554

Component LOC

FLD-R control-plane 1510
FLD-R client library 754

ZUC DPDK driver 732

Xilinx XCKU15P

Accelerator
FLD

x8 PCIe 3
ConnectX-5

PCIe switch
x8 PCIe 3

Host

NIC2x25 GbE

Figure 6: Innova-2 FPGA-based SmartNIC components.

to the host and the FPGA through a PCIe Gen. 3 x8 link each (see
Figure 6).

As FLD relies on peer-to-peer PCIe, it is not limited to SmartNICs,
but can also work with a separate NIC and FPGA boards connected
through a PCIe switch or the host CPU’s PCIe root complex. Never-
theless, we found optimizing for different PCIe fabrics difficult, as
the performance depends on the PCIe fabric’s latency. Bidirectional
traffic can suffer degraded performance when control messages are
delayed behind queued data messages. One possible solution is to
tune switch buffers to match the latency the NIC expects, creating
backpressure toward the NIC, and allowing the NIC to prioritize
control messages as needed. This solution is platform-specific, how-
ever. Our choice of the Innova SmartNIC with its integrated PCIe
switch simplified the task of using FLD in different servers.

We configure FLD to support two transmit queues. The re-
ceive/transmit buffers each have 256 KiB Transmit queues use a
pool of 4096 descriptors. This configuration meets our PCIe and
link bandwidth limitations and our testbed’s latency. While the
Innova-2 PCIe interface is limited to 50Gbps, the FLD hardware
interfaces operate at 100Gbps.

We implement example control planes for FLD-R/E and a helper
client library for accessing FLD-R control-plane remotely (see lines
of code in Table 4).

PCIe Optimizations. To maximize PCIe utilization we use com-
mon optimizations such as selective completion signalling [54] and
WQE-by-MMIO [55]. Multi-packet RQs (§ 4.3) also help due to their
smaller descriptor number.

Limitations. Implementing a driver in hardware limits portabil-
ity: a new NIC may have a different PCIe interface and require
FLD modifications. Nevertheless, some NIC families have enough
similarities to allow porting the design with minimal changes. For
example, we have successfully tested our ConnectX-5-based design
against ConnectX-6 Dx. In addition, some NICs offer standardized
interfaces such as virtio [23, 82], and FlexDriver can be modified to
support them. Thus, an accelerator using FlexDriver for a virtio-
compatible NIC will work with any compliant NIC.

Our use of ConnectX-5’s shared multi-packet RQ for RDMA
messages improves latency. Messages comprising multiple packets
generate completions when a packet arrives, even before the NIC
receives the entire message. This allows processing the message
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incrementally, reducing latency [38], but requires the accelerator
to handle the interleaving of packets of different queues.

The current FLD-E control-plane implementation uses static
match-action rules instead of interacting with its applications.

7 APPLICATIONS
We develop three accelerators to highlight FLD’s key benefits.

LTE Cipher Look-Aside Accelerator. We use FLD-R to develop a
disaggregated ZUC cipher accelerator [67] (128-EEA3/EIA3 [106]).
ZUC cipher is used in LTE mobile networks, where recent trends
move processing to the cloud [87].

The disaggregated ZUC accelerator communicates with remote
clients over RDMA Sends. Clients send cryptographic requests,
and the accelerated server responds with an en/decrypted response.
The request/response format includes a 64 B header for the crypto-
graphic key, initialization vector (IV), and additional metadata. The
ZUC accelerator comprises 8 ZUC modules, each operating, e.g., at
4.76 Gbps for 512 B messages, and a front-end load balancing unit.

We implement a client-side DPDK cryptodev driver for this accel-
erator using FLD-R interfaces. Compatibility with cryptodev APIs
allows replacing an existing local accelerator (e.g., Intel QAT [42])
with our disaggregated one without software changes. The driver
is easy to develop thanks to the use of the FLD-R client library (see
LOC in Table 4).

IP Defragmentation. The IP protocol may fragment large packets
into smaller frames to support networks with varying MTU sizes.
IP fragmentation is commonly used for tunneling mobile [111]
and multi-tenant traffic. Unfortunately, IP fragmentation prevents
transport-layer NIC hardware offloads such as RSS and L4 check-
sums from operating correctly and increases CPU utilization, and
techniques that attempt to prevent fragmentation may fail due to
misconfiguration [64].

We implement an IP defragmentation offload as an example of
a NIC packet processing extension, intended to intervene in the
middle of the network stack to enable other NIC offloads after
defragmenting IP packets.

We redirect fragmented packets to the accelerator at the embed-
ded switch layer and use NIC offloads on the fragmented packets
before and after defragmentation. In particular, we use VXLAN
tunnel decapsulation offload before IP defragmentation. This is nec-
essary due to pre-fragmentation, i.e., fragmenting packets before
encapsulation or encryption to reduce the load on the decapsulat-
ing/decrypting endpoint [18, 36].

IP defragmentation could have also been implemented in a BITW
design, but any pre-processing would have to be programmed into
the FPGA, occupying some additional area. While a VXLAN decap-
sulation offload may not take much area, this is only one example.
Cloud applications may require emerging hardware offloads such
as IPSec [15, 41, 80], which are area-demanding [117]. FLD can use
them transparently in the NIC, without reimplementing them in
the accelerator.

IoT Token Authentication Offload. We implement a DDoS pro-
tection offload for IoT server applications [66]. The accelerator
validates a cryptographic token provided within each message. The
accelerator extracts a JSON Web Token [52] from CoAP-encoded

Table 5: Hardware: resource utilization and lines of
code [21].

Module Clk. LUT FF BRAM URAM LOC

FLD 250 50K 66K 35 44 11K
PCIe core 250 12K 23K 44

ZUC 200 38K 37K 242 6K
IP defrag. 250 17K 16K 984 64 2K
IoT auth. 200 118K 138K 293 8K

messages [100], and validates the token, dropping packets with
invalid HMAC-SHA256 signature. Our design supports 20Mpps
for 256 B packets using 8 processing units.

Unlike IP defragmentation, this offload serves user applications
rather than accelerating the hypervisor’s virtual switch. Thus, it
shows how FLD-E can utilize NIC features for accelerator virtual-
ization and performance isolation. Several tenants on the same host
can share this offload, but each may have a different HMAC key. We
rely on the NIC to identify flows that require authentication and tag
them with the tenant identifier. The accelerator only needs a linear
table of HMAC keys, indexed by the tag. In addition, sharing the
accelerator among tenants requires QoS mechanisms to guarantee
performance isolation. We use the traffic shaping capabilities of the
NIC to implement maximum bandwidth shaping for the accelerator.

We chose this workload as it has already been implemented in
previous work, NICA, on a BITW NIC [28], thus allowing for a
direct comparison. In NICA, the design required a larger area (36%
more LUTs, 40% more FFs, and 63% more BRAMs) while being
5.7× slower. The larger area footprint of NICA is partly because
it reimplements some NIC features that FLD reuses. Specifically,
NICA maps network flows to HMAC keys with its own flow table
and QoS logic. As a BITW device, its NIC’s ASIC processing only
comes after the FPGA in the receive pipeline, preventing ASIC use.

8 EVALUATION
In our FLD evaluation, we aim to highlight the performance, area,
and functional benefits of the FLD design, demonstrating that it
occupies an advantageous point in the three-way trade-off that
motivated this work (§ 3).

Setup. We run two kinds of experiments: local and remote. Local
experiments stress FLD’s PCIe interface by sending and receiving
traffic from a host CPU to an accelerator, programmed on a local
Innova-2 SmartNIC. The maximum throughput here is 50Gbps
limited by the PCIe. To run the FLD-E experiments, we associate
one of the Innova-2 NIC’s vPorts with the load generator, and
another vPort with FLD-E, while the embedded switch is configured
to loop back traffic between the two vPorts. In FLD-R experiments,
we connect a client QP on the host to an FLD QP associated with the
accelerator, where both QPs are associated with the same Innova-2
NIC.

Remote experiments measure end-to-end network performance
using a client node with a ConnectX-4 NIC and a server node with
an Innova-2, connected back-to-back. We use 1500 B MTU for
Ethernet and 1024 B for RoCE. Themaximum throughput is 25Gbps
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Figure 7: FLD microbenchmarks.

limited by the NIC’s Ethernet interface. For FLD-E, we run the load
generator on a client node and send traffic to the accelerator on a
server node. Unless stated otherwise, we steer acceleration results
to the software network stack to complete application processing.
For FLD-R, we connect a QP on the client node to a remote FLD
QP on the server node.

The client and the server run CentOS 7.0 on Haswell CPUs with
32GiB of RAM.

8.1 FLD Characteristics
Performance Model. FLD communicates via PCIe, which implies
a certain bandwidth overhead. Thus, it is unrealistic to expect
line-rate throughput for any traffic pattern. To estimate an upper
bound on the expected FLD performance that includes the PCIe
overhead, we calculate the per-packet overhead and derive the
expected throughput [27]. The overhead consists of control traffic
associated with NIC–FLD communication, such as descriptors and
completions.

PCIe vs. Raw Ethernet. Figure 7a compares the performance
potential of FLD against a direct Ethernet link connected to the ac-
celerator, as done in accelerator-hosted or BITW designs. We show
the estimates for different network and PCIe rates. The 25Gbps
configuration to the left corresponds to our remote experiments.
The model shows that the overheads allow meeting line rate of
25Gbps for any packet size. The 50Gbps configuration’s PCIe line
shows the expected performance for our local experiments. We can
also conclude that FLD’s current design can reach 95% of Ethernet
line rate at 512 B packets for both 50 and 100Gbps.

Some NIC optimizations for reducing PCIe traffic with small
packets, such as inlining packet payload into the descriptor ring,
compressing receive completions, andEnhancedMulti-PacketWrite
(EMPW) optimization [26] may further improve the performance
for such traffic patterns. For a fair comparison, we disable EMPW
in the CPU driver as well in FLD-E experiments below.

Area. We list the area utilized by FLD and its accompanying Xil-
inx PCIe core in Table 5, as well as the area of example accelerators.
FLD area is comparable or smaller than the alternatives (Table 1),
but it enables using all the NIC offloads, thus providing a much
richer set of features than the competitors.

Table 6: Network echo round-trip for 64B packets in µs.

Mean Median 99th-% 99.9th-%

FLD-E 2.78 2.6 3.4 4.34
CPU 2.36 2.34 2.58 11.18
Emu [107] 1.09 1.11

8.1.1 FLD-E. To evaluate FLD-E raw performance, we use a simple
echo FLD-E accelerator, which sends back each packet it receives.
The goal is to estimate the overhead of using FLD-E vs. a reg-
ular CPU driver. We configure the Innova-2 NIC to send FLD-E
outbound traffic back to the client. We use the DPDK testpmd appli-
cation to generate packets towards the accelerator while measuring
the bandwidth and the latency and compare it against a testpmd
implementation on the CPU and our performance model’s estimate.

Figure 7b shows the bandwidth for different packet sizes. We
see that FLD meets the expected performance for Ethernet packets
starting with 128 B and 256 B for the remote and local interfaces,
respectively, and its performance is on par with a CPU driver.

We furthermeasure the throughput of the FLD-E echo accelerator
while forwarding packets of mixed sizes taken from the IMC 2010
data-center trace [9]. FLD-E is able to process 12.7Mpps, compared
to 9.6Mpps on a single CPU core with DPDK testpmd, showing
that FLD can drive the NIC as efficiently as the CPU.

We test FLD-E latency on an empty system with the same setup,
comparing it to an echo server running on the CPU. Table 6 shows
that FLD-E increases the mean latency by 17% compared to the
CPU, likely due to the slower FPGA clock rate. However, it improves
99.9th percentile latency by 2.5× because there is no OS interference
with the network stack.

Compared to a direct-attached FPGA or a BITW design, where
the accelerator can respond directly to the network, FLD increases
latency as packets go through the ASIC NIC and a PCIe link in every
direction. For example, our latency is 1.69 µs higher than [107]).
Nevertheless, we believe that a slight latency increase might often
be worth the exchange for the ability to use additional features
provided by the NIC.

8.1.2 FLD-R. We measure FLD-R throughput by using the echo
accelerator and connecting it to RDMA QPs. The results are in
Figure 7b’s right column. While slightly lower than FLD-E, FLD-R
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Figure 8: Disaggregated ZUC accelerator performance.

remote performance meets its 25Gbps target line rate for messages
larger than 512 B. For smaller packets, the system is bottlenecked
by the CPU client. Unfortunately, we did not find the reason for the
reduced performance in local FLD-R experiments. The experiment
also demonstrates how FLD-R uses messages larger than the MTU,
relying on the NIC’s transport for segmenting packets in hardware.

Figure 7c shows the 1 KiB messages latency vs. throughput while
varying the load. At a low load, the median latency is 9.4 µs for
local access and 10.6 µs for remote. As the load increases, queuing
delay dominates the latency; FLD reaches a bottleneck near 82 % of
the expected local/remote bandwidth.

8.2 End-to-End Applications
8.2.1 Disaggregated LTE Cipher Accelerator. We measure the per-
formance of the ZUC accelerator usingDPDK’s test-crypto-perf [110]
on the client. Figure 8a compares the encryption throughput when
accessing the remote accelerator (25Gbps link) against a local CPU
implementation. We also show the upper bound estimate produced
by the performance model, which considers RoCE headers and the
64B app headers accompanying each request/response. The CPU
implementation uses DPDK’s software ZUC driver, based on Intel
Multi-Buffer Crypto Library [44]. For request size ≥ 512 B FLD
reaches 17.6 Gbps, 89 % of the expected bandwidth, and 4× higher
than the CPU throughput. This result can be further improved by
adding on-FPGA key storage and request batching, which we leave
to future work.

Figure 8b shows latency vs. bandwidth graphs. The disaggre-
gated accelerator is not faster at low loads, but it is still worth using
to pool resources and free the CPU core consumed by the software
implementation.

Overall, the ZUC experiments show how FLD promotes the
development of high-performance disaggregated accelerators.

8.2.2 IP Defragmentation. We compare our defragmentation of-
fload against a baseline that decapsulates VXLAN traffic using NIC
offloads and then defragments packets in software. We measure
throughput using 60 iperf TCP flows and compare three configura-
tions:

(a) no fragmentation,
(b) 1500 B packets fragmented over a route configured with a

1450 B MTU (without encapsulation), and

(c) 1500 B packets fragmented and sent over a VXLAN tunnel
with a 1450 B MTU.

Several NIC offloads break on fragmented packets, including
RSS and checksum, and consequently, performance drops from
23.2 Gbps to 3.2 Gbps with software defragmentation. Without RSS,
most packets default to a single receiver-core, which becomes the
bottleneck. Hardware defragmentation enables RSS and reaches
22.4 Gbps, a 7× speedup. With VXLAN decapsulation, we observe a
lower speedup (5.25× compared to the CPU-only version) because
the sender becomes the bottleneck, as in our setup, it relies on
software fragmentation and tunneling.

This experiment demonstrates that FLD enables injecting the ac-
celeration in the middle of the packet processing pipeline, enabling
NIC packet processing offloads to be invoked both before and after
the accelerator.

8.2.3 IoT Token Authentication Offload. We test the accelerator
in the remote setting by generating varying request sizes using
TRex [114]. We observe the offload meets line-rate for packets
≥ 256 B (not shown).

We also validate that the accelerator indeed provides perfor-
mance isolation among different tenants by sending two competing
flows to the receiver, with 8Gbps and 16Gbps respectively. Here
the accelerator is configured to accept only 12Gbps of traffic. With-
out shaping, the accelerator admits flow traffic in proportion to
the flow’s link utilization, resulting in an uneven allocation of the
accelerator among the tenants (4.15 Gbps vs. 8.35 Gbps). By setting
a 6Gbps limit to both flows, flow B cannot exceed its limit and thus
allows flow A to reach its allocated bandwidth.

Overall, this experiment demonstrates the ability of FLD to en-
able accelerator virtualization by relying on the NIC for flow mark-
ing, virtualization, and traffic shaping.

9 DISCUSSION
Even though our Innova-2 implementation of FLD is limited to
50Gbps, we believe FLD can scale to higher speeds. We identify
two primary potential obstacles to scaling: internal fabric (PCIe)
bandwidth and FlexDriver design scalability. For the former, we
believe that internal fabric speeds will increase proportionally to
future network speeds. Thus, a 400Gbps NIC should communicate
at 400Gbps with an accelerator through a future fabric such as PCIe
5.0 or CXL. As for the latter, the current FLD implementation is
clocked to process up to 100Gbps. We believe the design can scale
either by increasing the pipeline width or instantiatingmultiple FLD
“cores” within the accelerator, combined with NIC RSS offloads to
balance the load on these cores. Higher bandwidth will also require
larger buffers, but they are still within reasonable memory capacity
bounds (§ 5.2.1).

10 RELATEDWORK
Our work builds upon previous GPU networking work to use
NICs directly from GPUs, eliminating the CPU from the critical
path [2, 22, 60, 84, 91]. These works implement communication
tasks in GPGPU cores or CUDA streamMemOps [2]. In contrast, we
implement FLD as a hardwaremodule, suitable even for accelerators
that lack GPGPU-like programmability.
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FlexNIC [56] suggests using match-action programmable DMA
to offload GPU communication tasks. Lynx [113] uses SmartNIC
ARM cores to execute network stack functionality and enable accel-
erator networking. Both adapt the NIC’s DMA interfaces to simplify
accelerator logic. Contrarily, we embed FlexDriver near the accel-
erator, supporting NICs without programmable DMA interfaces or
ARM cores.

New fabrics designed for disaggregation such as Gen-Z [35]
and CXL [118] can connect remote accelerators and their clients.
However, these are designed for rack-/row-scale, and accelerators
may still require NICs for data-center-wide traffic.

We expand upon the alternative techniques described in § 3.

CPU-Mediated. Early attempts at accelerator networking relied
on CPUs to orchestrate GPU networking [57, 90, 92]. CPU perfor-
mance limits such an approach.

Accelerator-Hosted. NetFPGA [125] and other FPGA NICs [33,
103] enable prototyping new kinds of networking offloads [85],
architectures [13, 62, 89, 120], and applications [8, 112]. Similar
applications can be prototyped over FlexDriver, relying on external
NICs instead.

Previous work suggested using FPGAs as accelerators directly
attached to the network or utilizing FPGA-based SmartNICs this
way. NMU [96] provides anti-spoofing and tunneling for direct-
connected FPGAs. Microsoft’s Catapult [14] implements its LTL
transport on FPGAs, serving disaggregated [17] and distributed [93]
applications. Sidler et. al has implemented network stacks for
TCP/IP [101, 102] and RoCE [103] for FPGA applications, used
by frameworks such as Galapagos [30], NICA [28], Coyote [58],
and IBM’s network-attached FPGAs [121]. We try to offer similar
networking services for accelerators using an external ASIC NIC.

Habana Gaudi DNN accelerator embeds a RoCE v2 NIC [68]. The
integrated NIC lacks several features of a full-scale NIC, such as
virtualization and memory protection [34]. Others use a dedicated
fabric for accelerator–accelerator communication [75, 83, 93]. Our
goal is to connect accelerators to a converged data-center network.

Bump-in-the-wire NICs [14, 45, 69] use an ASIC NIC for some
of its functionality. Using the NIC’s DMA interfaces for SR-IOV
and RDMA, AccelNet implements SDN in FPGA [32], and NICA
implements inline application acceleration [28]. In contrast, FLD
enables additional NIC offloads.

FPGANetwork Programming Frameworks. Programming languages
and hardware development frameworks such as Emu [107], P4 [119,
124] and implementations of Click for FPGAs [61, 95] simplify build-
ing packet processing accelerators. FlexDriver complements these
by offloading some of their functionality to the NIC.

NIC Offloads. In addition to those in § 2. NIC vendors offer a
variety of offloads, e.g., for cryptography [15, 41, 80, 88] and stor-
age [11, 41, 63]. Some offer full TCP offload engines [72]. Amazon
EFA offloads reliable datagrams [99], and 1RMA [104] offers partial
transport offloads for flow control and security. Our design provides
accelerators with access to such offloads.

11 CONCLUSION
Efficient accelerator communication with the network is essen-
tial for building disaggregated, distributed, or inline accelerators.
FlexDriver offers a new method for connecting accelerators, fully
utilizing existing NIC functionality, with minimal CPU overhead
and area utilization. Accelerators drive the NIC over peer-to-peer
PCIe fabric and benefit from NIC offloads such as RDMA, tunneling,
and traffic shaping.
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