
An edge-queued datagram service for all datacenter traffic

Vladimir Olteanu ∗‡, Haggai Eran†#, Dragos Dumitrescu∗‡, Adrian Popa∗, Cristi Baciu∗,
Mark Silberstein†, Georgios Nikolaidis4, Mark Handley◦∗, Costin Raiciu∗‡

∗ Correct Networks, † Technion, ◦ UCL, 4 Intel, # NVIDIA, ‡ University Politehnica of Bucharest

Abstract
Modern datacenters support a wide range of protocols and
in-network switch enhancements aimed at improving perfor-
mance. Unfortunately, the resulting protocols often do not
coexist gracefully because they inevitably interact via queu-
ing in the network. In this paper we describe EQDS, a new
datagram service for datacenters that moves almost all of
the queuing out of the core network and into the sending
host. This enables it to support multiple (conflicting) higher
layer protocols, while only sending packets into the network
according to any receiver-driven credit scheme. EQDS can
transparently speed up legacy TCP and RDMA stacks, and
enables transport protocol evolution, while benefiting from
future switch enhancements without needing to modify higher
layer stacks. We show through simulation and multiple im-
plementations that EQDS can reduce FCT of legacy TCP by
2x, improve the NVMeOF-RDMA throughput by 30%, and
safely run TCP alongside RDMA on the same network.

1 Introduction

Data center networks suffer from a range of unique problems
that make it hard to effectively utilize the potential of the
underlying high performance redundant multipath network
topology. Notable issues include incast traffic patterns, flow
collisions and transient congestion due to flow-level load bal-
ancing, interference between low-latency request/response
traffic and bulk transfers, increasing requirements to offload
work from the host CPU to avoid host stack bottlenecks, and
the need to support special-purpose high performance proto-
cols such as RDMA in the same network as legacy protocols.

These are all partially solved problems. There is a strong
trend towards NIC offload, with datacenters deploying smart
NICs and increasing ASIC support for specific transport pro-
tocols being offered by NIC vendors. However, moving trans-
port state into NICs makes it harder for dissimilar protocols
to coexist, and risks embodying the status quo in hardware.

At the same time, the research community has proposed a
rich set of solutions such as phost[14], Homa[31], NDP [18],
1RMA [42] and Aeolus[20] which tackle incast and, to vary-
ing degrees, also address issues of load-balancing and low-
latency request/response traffic. What these solutions share is
a receiver-driven control loop that tightly manages inbound
traffic, eliminating large in-network queues. Each of these, by

itself, would be a substantial improvement on the status quo,
but datacenters cannot simply migrate to a single new trans-
port protocol. Even if there were buy-in as to which transport
protocol to adopt, there are far too many legacy applications
and operating systems that would need to be re-written. How
then can we take the best ideas from the research community
and deploy them in production while supporting a plethora of
legacy protocols ranging from vanilla TCP to RDMA?

One strawman solution would be to simply pick a low
latency receiver-driven transport protocol and tunnel all dat-
acenter traffic over it. The great advantage of such a control
loop is that it performs admission control to the physical net-
work, allowing very small switch buffers to be used while
still providing low end-to-end loss. Is it possible to use this
to provide a new datagram service that higher layer protocols
such as TCP, DCTCP or RDMA run over?

The difficulty is that TCP, DCTCP, RDMA and other pro-
tocols each have their own expectations when it comes to
sharing the underlying network. In particular, they use inter-
actions between flows mediated via queues in the switches to
drive their own control loops. We cannot just eliminate switch
queues and expect everything to still work - rather we need to
move the queuing from the switches back to the network edge,
either in the host or NIC. The low-latency control loop can
then clock packets from these edge queues into the network.

We have designed and implemented just such a layer called
Edge-Queued Datagram Service (EQDS). Rather than a regu-
lar transport protocol, EQDS provides a datagram service to
higher layers, implemented via dynamic tunnels. Its receiver-
driven control loop is loosely based on NDP and 1RMA[42],
but can be extended to utilize other in-network mechanisms
where these are available.

Moving the interaction between flows out of the switch
queues and back into EQDS edge queues provides many
advantages. The receiver directly controls when enqueued
packets from different senders enter the network, ensuring
isolation even when higher layer protocols run different con-
trol loops. For example, TCP and RDMA will not normally
coexist gracefully when sending to the same host, but EQDS
can mediate, eliminating loss and allowing fair sharing.

Different EQDS queuing disciplines can be also used for
different protocols, each providing appropriate feedback to
the higher layer control loop; this both improves higher layer
protocol performance, and it also allows dissimilar protocols
sending from the same host to be protected from each other.

Socket API

Ke
rn

el
N

et

Verbs API

N
IC

Message API

U
se

r
N

IC

RoCEv2 MP-RDMA IRN Swift

Packet
Trimming

Priority
Queues

Pkt-level
ECMP

Flow-level
ECMP

Shared
buffersECN INTPFC

NDPHoma

1RMA

Vanilla
TCP

MPTCP DCTCP

DCQCN Timely HPCC

Figure 1: Fragmentation of datacenter networking

Adding new queuing disciplines to support innovative future
transport mechanisms is also simplified as they only need to
be deployed in the relevant sending hosts, not in switches.

Finally, EQDS uses packet spraying to balance load evenly
in the network core, avoiding flow collisions, and increasing
throughput. Legacy protocols such as TCP and RDMA do not
normally cope well with reordering, so EQDS implements a
reorder buffer in the receiver. With a conventional network
such a reorder buffer might deliver the highest latency seen
across all paths, but with good load balancing and short switch
queues we find that EQDS reorder buffer latency is minimal.

In this paper we detail the design and implementation of
EQDS and its on-demand zero-RTT tunnel protocol, and eval-
uate it running both natively in Linux hosts and offloaded to
two brands of smart NIC. We show that the EQDS control
loop operating on very short timescales does not adversely af-
fect higher layer control loops such as TCP’s Cubic or RDMA
using DCQCN. Rather, it allows diverse higher-layer control
loops to co-exist gracefully, protects latency-sensitive appli-
cations from queuing delays caused by bulk transfers, while
increasing throughput by eliminating flow collisions.

2 Motivation
IP has been the narrow waist[7] of the Internet stack since
from the early days of the Internet, providing basic end-to-end
service. In reality, the narrow waist is not just IP: a functioning
Internet also assumes some form of TCP-compatible conges-
tion control and sufficient in-network queuing for it to do its
job, though this lacks a clear layer in the stack.

This lack of abstraction has particularly hurt datacenter net-
working. Here, a plethora of work has pushed optimizations
across boundaries, including to the host stack, switches or
both. As a result of all these enhancements, what has emerged
are multiple parallel stacks, each assuming a slightly differ-
ent “basic” datagram service, that must be isolated from each
other in the network to avoid them fighting (see Fig. 1). Fur-
ther, optimizations for one stack often hurt the performance
of others in the same network.

Many have improved on TCP congestion control[1, 28, 44],
reducing vanilla TCP’s need for large switch buffers. These
TCP’s are still built upon basic datagram service though, and
probe network capacity to sense congestion. In so doing they
interact with each other via queues, increasing latency.

Even datagram service itself has been tweaked, with many
enhancements aimed at improving service for certain traffic
classes, as in Fig. 1. For example, RoCEv2 can use PFC to
provide lossless service as assumed by RDMA; this brings its

own set of unique feature interaction problems [16, 29].
Protocols like TCP and RDMA also assume largely in-

order delivery from the underlying datagram service. In dat-
acenters, in-order delivery is provided by flow-level ECMP,
though this wastes capacity in Clos topologies. To better use
multipath networks, variants of these protocols have been
proposed [38, 26, 29] but rarely deployed. Another source
of performance problems as network speeds have increased
has been the end-host stack implementation itself. Even TCP
resorts to segmentation and checksum offloading, but appli-
cation writers often use kernel bypass mechanisms such as
DPDK or even offload all the work to the NIC using RDMA,
and in so doing impose unique dynamic load on the network.

The web of dependencies between higher layer protocols
and in-network enhancements makes deploying new proto-
cols increasingly difficult. The root cause of the problem is
that basic datagram service forces diverse higher layer pro-
tocols to interact via queues in the network. We argue that
in-network queuing, beyond the minimum needed to smooth
fan-in, is antithetical to building a high performance low-
latency general-purpose datacenter network.

We propose a novel Edge-Queued Datagram Service as
the new narrow waist for the datacenter networking stack.
To transport stacks above, EQDS offers a what looks like a
conventional datagram service via virtual interface queues in
the host that buffer traffic and provide appropriate congestion
feedback signals. EQDS then sends this traffic when possible,
utilizing diverse in-network mechanisms to maximize utiliza-
tion and minimize in-network queuing latency. EQDS shares
the network at the hosts, allowing conflicting transports to run
side-by-side on the same network.

3 Concept
We introduce the EQDS concept by means of example. Con-
sider Figure 2a: two TCP senders send to a receiver across
a conventional network where the bottleneck is at the final
hop as is common in datacenters [5]. TCP needs to build a
queue to sense congestion and back off, forcing any other
flow sharing the queue to behave similarly to share the link
reasonably. RDMA or other transports (see Figure 1) that do
not will cause problems and need to be isolated from TCP.

In contrast, the EQDS concept is shown in Figure 2b. The
underlying latency across modern datacenter networks is so
low that protocols like NDP, Homa and Aeolus can use credit
mechanisms whereby the receiver clocks packets from the
sender as required, ensuring a standing queue never builds in
the network. Protocols like TCP still need a queue to drive
their control loop, but EQDS moves this queue to the sending
hosts, where it is under the receiver’s control. If many TCP
senders create an incast, the default behavior they observe is
almost identical to what would happen if the last hop switch
runs fair queuing with a large amount of buffering.

As the queuing has been removed from the network itself,
EQDS can run different queuing disciplines in the sending

TORTCP 1

TCP 2
TCP

TOR

IF

IF
IFTOR

(a) Conventional datacenter

TCP 1

TCP 2
TCP

TOR

TORIF

IF
IF

TOR
EQ
IF

credit

credit

EQ
IF

EQ
IF

(b) EQDS moves queuing to senders

DQ
IF

TCP

RDMA

TCPTOR

TORIF

IF
IF

TOR

credit

creditr

RDMA

DCQCN

Droptail

EQ
IF

EQ
IF

EQ
IF

Fair share

(c) Fair share between dissimilar protocols

TCP 1

TCP 2
TCP

TOR

TORIF
IF

IF
TOR

Reorder
queuesPer-packet

ECMP

EQ
IF

EQ
IF

EQ
IF

(d) EQDS can utilize packet spraying

Figure 2: Overall EQDS concept

EQDS Virtual Interface (EQIF), as appropriate to the traffic
being carried. Figure 2c shows a legacy TCP sender coex-
isting with an RDMA sender, with the bottleneck link being
shared fairly, or with a proportional share, if that is deemed
appropriate by the network or host administration policy.

Finally, Figure 2d shows EQDS using per-packet ECMP
(aka packet spraying) in the underlying network to minimize
latency and increase network capacity. Few current transport
protocols cope well with the level of reordering this usually
causes, but as EQDS keeps network queues very small, the
reordering is easily managed by a short reorder queue in the
receiving EQIF, so it is hidden from the higher level protocol.

In summary, the key EQDS concepts are: (1) move queuing
out of the network leaving just the bare minimum required;
(2) queue traffic in the sending host; release it when the re-
ceiver requests it; (3) run appropriate queue disciplines for
different classes of application as they require; and (4) use
per-packet ECMP to load-balance evenly so as to minimize
latency but, by default, hide it from higher layer protocols.
The EQIF virtual interfaces then become the control points
for the network, enforcing sharing policies.

4 Design

To implement EQDS, we need four main components:
• One or more EQIFs on the sending host, which implement

queuing disciplines to support higher level protocols;

• One EQIF on the receiving host, which implements a short
reorder queue for best-effort in-order delivery service to
protocols that are intolerant to reordering;

• A mechanism to encapsulate packets reliably across the
network from sending EQIF to receiving EQIF;

• An edge-to-edge control loop to clock packets from send-
ing EQIF to receiving EQIF.
With these in place diverse higher-layer protocols are car-

ried over EQDS, which hides lower-layer in-network mecha-
nisms. The edge-to-edge control loop may differ in different
datacenter environments or even within one datacenter, de-
pending on switch capabilities. In effect, EQDS has become
the new narrow waist of the datacenter protocol stack.

In the virtualized protocol stack, EQDS operates at the
same layer as VXLAN, encapsulating higher-layer traffic go-
ing to EQDS-capable destinations. To provide datagram ser-
vice, EQDS needs to provide on-demand tunneling from EQIF
to EQIF without prior setup, without spending an RTT per-
forming a handshake to establish control state, and with the
expectation that packets sent in the first RTT will be reordered
by per-packet ECMP. This demands a novel tunnel protocol
(§5). EQDS tunnels are unidirectional; two are setup, one in
each direction, if user traffic is bidirectional.

EQIF per-destination tunnel state is established on packet
receipt at the sender, and established at the receiver using a
zero-RTT protocol. This state can be unilaterally discarded
when idle at any time by either side to reduce memory usage
and will simply be reestablished as needed.

4.1 EQDS control loop

Critical to EQDS performance and minimizing in-network
queuing is the edge-to-edge control loop. EQDS allows dif-
ferent control-loop mechanisms to be used depending on the
underlying network capabilities.

For a fully provisioned network our preferred in-network
mechanism is packet trimming, which allows EQDS to use
an NDP-derived control loop. This allows a burst of packets
to be sent in the first RTT before credit-based control from
the receiver takes over for subsequent RTTs. The sending
EQIF keeps packets until they have been acknowledged by
the receiving EQIF, or retransmits them on receipt of a NACK.
In this manner, EQDS provides a highly reliable service, but
it does not guarantee no packet loss whatsoever. A full re-
liability guarantee would prevent EQDS managing its own
state effectively, risk resource starvation attacks, and would
be pointless as full reliability requires end-to-end acknowl-
edgment whereas EQDS may be implemented in the NIC so
cannot protect data all the way to the receiving process.

Where packet trimming is unavailable, EQDS uses a
1RMA[42]-derived mechanism where the sending EQIF re-
quests credit from the receiver, or it can use a Homa/Aeolus-
derived mechanism where the first RTT of data is sent using

EQ
DS

Native
DPDK

TCP/IP

Legacy
app

RDMA

Storage
app

A

EQ
DS

B

TCP/IP

VM

TCP/IP

VM

RDMA Native

EQ
DS

DPDK
TCP/IP
LegacyStorage

C

EQ
DSD

TCP/IP

VM

EQDS tunnels

Sending
EQIF

Receiving
EQIF

Receiving
EQIF

Receiving
EQIF

Sending
EQIFs

Figure 3: Multiple stacks run on the same substrate.

low-priority service. In an underprovisioned network, core
network congestion is also possible, though it should be rare
if per-packet ECMP is used. In such cases, in-band network
telemetry (INT) might by used to implement an HPCC-style
control loop. Our current implementation supports both NDP-
style pro-active transmission and request-to-send. We expect
future networks to innovate further in this area.

EQIFs. EQDS allows multiple protocol stacks to run on the
same network substrate, as shown in Figure 3. The DPDK-
based stack on host A is sending to its peer at D while a virtual
machine at B also uses TCP to send to the VM at D. Without
EQDS, the DPDK stack will saturate the link to D, starving
TCP. This could be prevented using fair queuing in D’s ToR
switch, but EQDS achieves the same effect without needing
to configure switches and with finer grain control.

At D, a single receiving EQIF receives the flows from A
and B. It maintains state (reorder queues, sequence numbers,
etc) for incoming EQDS tunnels, allowing it to effectively
manage all incoming traffic. By default, D’s receiving EQIF
will send equal credits to A and B, ensuring a fair share and
no overload. Proportional sharing or strict priority can also
be achieved: the inbound sharing policy can be configured as
needed - both by the network administrator and, if the VM
and native stacks are run by the same user, by them too.

Three different stacks are in use at A: there are RDMA and
TCP flows to C, a TCP flow to a VM at B and the DPDK
native flow to D. This results in three sending EQIF virtual
interfaces at A for the three different edge queue disciplines.
The two TCP flows share the same sending EQIF which
runs a TCP-compatible queue discipline. All three EQIFs at
A cooperate using deficit round robin, so if the total traffic
saturates A’s outgoing link, they will share it fairly (or unfairly,
if that is the configured policy).

To summarize: an EQIF is a virtual interface that imple-
ments a specific queue discipline or feedback mechanism to
higher-layer protocols. One sending EQIF contains multiple
queues, each feeding an EQDS tunnel to a single host. Multi-
ple transport flows from multiple VMs can share one EQIF
so long as the protocols used can coexist in the same queue.

flags next
proto sequence number

pull target path
ID

sender
ID

0 31

flags pull
sender ID ack number

pull number busy time

Data Packet Header Control Packet Header0 31

Figure 4: Tunnel Headers for Data / Control Packets

5 Tunnel protocol
To carry data from sending EQIF to receiving EQIF we need
a new tunnel protocol. The primary requirements are:
• A receiving EQIF should clock packets from its set of

sending EQIFs so as not to cause in-network queues to
build. At the least, this means it will send credit at a rate
that does not exceed the receiver’s access link speed.

• A receiving EQIF can choose how to distribute credits to
senders, with the default being to implement a fair share.

• The tunnel should expect per-packet ECMP service and
be robust to reordering this causes. Where possible, the
sending EQIF will determine the path taken by each packet.

• The tunnel should provide best-effort reliable and in-order
delivery from the receiving EQIF to higher layer protocols.
Losses and reordering should be rare enough to minimally
impact the performance of higher layer protocols.

• The tunnel should support unreliable, out-of-order delivery
to higher layer protocols that prefer minimal latency.

• The tunnel should come up on demand with no pre-data
handshake required, and be discardable at any time. If the
endpoints end up out of sync, it should self-synchronize.

• The tunnel should be able to take advantage of a range
of underlying network enhancements without higher layer
protocols needing to be aware of them.

• Both sending and receiving EQIFs should be able to im-
pose policies for sharing, configured by the network op-
erator and by the users (to the extent user policy does not
conflict with operator policy).

• EQIFs must be capable of being implemented in fast NIC
hardware with bounded memory resources.
These requirements necessitate an unusual tunnel protocol;

it has many aspects of a transport protocol, but is soft-state,
being established, dropped and reestablished based on packet
arrivals, yet it provides fine-grain closed-loop control.

At a basic design level, EQDS is a tunneling protocol with
an NDP-derived control loop, that runs on top of UDP. It can
carry multiple types of traffic, including IP and VXLAN. Its
control fields (shown in figure 4) were meant to complement
VXLAN and there is no overlap in functionality between
the two; indeed, EQDS could be implemented as a stateful
extension to VXLAN encapsulation if required 1.

Data Clocking. As with NDP, the receiving EQIF sends
PULL packets containing credit to the sending EQIF; the

1For testing, we encapsulated plain IP traffic, rather than VXLAN.

sending EQIF then sends data packets matching that credit
from the corresponding tunnel queue in response. The receiv-
ing EQIF paces the sending of credit so that after the first RTT
the aggregate arrival rate matches the incoming link speed.

To summarize NDP as described in [18]: when a sender
starts, one RTT of data is sent without waiting for credit; after
that, the sender waits for PULL packets from the receiver.
This means that there can be an incast in the first RTT where
loss occurs. NDP copes with this using packet trimming - the
payload is removed from packets that would overflow the
queue, and just the header is forwarded to the receiver. This
makes the network lossless for metadata, though not for data,
and informs the receiver of demand. The receiver can then
request retransmission of trimmed data and transmission of
new data using PULL packets. In a large incast it may take
some time to send a PULL to a sender, so the receiver ACKs
or NACKs each data packet so that the sender knows which
packet buffers to free and which to add to its retransmit queue.

Where the underlying network supports trimming, an
EQDS tunnel uses the NDP mechanism as described above
for the first RTT, as it minimizes latency. EQDS supplements
this with a request-to-send mechanism, where the sender di-
rectly requests credit from the receiver. This is used when
trimming is unavailable and for intermittent bursty flows.

Conceptually, each EQDS tunnel maintains a constant
bandwidth-delay product (BDP) of credit which is passed
between sender and receiver. This credit either starts at the
sender (NDP-like) or at the receiver (RTS). Credit flows from
sender to receiver with data packets and from receiver to
sender with PULL packets. EQDS differs from NDP in how it
keeps this window constant in the presence of control packet
loss, as NDP failed to do so in corner cases.

EQDS credit is expressed in bytes. To send a packet of
size b bytes, the sending EQIF must possess b bytes of credit.
PULL packets contain a pull number which starts at zero and
increments for each PULL sent to a source. When the highest
pull number seen by the sending EQIF increases by n, this
grants n MTUs of credit.

When a sending EQIF sends data, a pull target field in
the header indicates to the receiver how much credit is de-
sired beyond the current pull number. This is capped at one
bandwidth-delay product (BDP) - typically 10 to 30 packets.

The receiving EQIF maintains an active sender list (ASL).
An active sender is an incoming EQDS tunnel that has out-
standing data to send. Every MTU-time the receiving EQIF
will send one MTU of credit to the sender at the head of the
ASL. If this causes the pull number to reach that sender’s pull
target, this credit will satisfy all the known demand from that
sender. The sender will then be removed from the ASL and
placed in an inactive senders set. If the pull number does not
reach the pull target, the credit sent will not yet be sufficient,
so the sender is re-inserted at the tail of the ASL. In this way
all active senders get a fair share of capacity and credit is not
sent to sending EQIFs that have no queued data.

The ASL is similar in concept to the NDP pull queue, but
unlike NDP it ensures that a one-BDP credit window invariant
always holds. Conceptually, the sum of credit stored at the
sender, packets in flight, pulls in flight carrying credit, and
credit implicitly stored in the ASL entry at the receiver is a
constant so long as sufficient demand remains.

Implementing the ASL as a FIFO ensures incoming traffic
is split fairly by default. To implement other sharing policies,
a PIFO queue[43] can be used in place of a FIFO, allowing a
wide range of policies to be implemented.

To avoid sources going idle and then immediately bursting
again, the receiving EQIF tells senders the minimum time
its access link will be saturated using the busy time field in
control packets (the pull targets inform the receiver of the
total queue size at every sender). Even in trimming networks,
if a bursty sender restarts within this busy time, it always uses
RTS before sending, as bursting would cause unnecessary
trims; senders can burst after the busy time elapses.

Tunnel setup and teardown. A sending EQIF creates tunnel
state when packets for a new destination arrive. It picks a
sequence number with certain constraints (see Appendix A for
details) and starts encapsulating packets without waiting for
a handshake to complete, setting the SYN flag in all packets
until it receives a matching SYN +ACK packet in response.
This informs the receiver of the new tunnel and is robust to
reordering caused by per-packet ECMP.

Either side can unilaterally drop tunnel state. As an opti-
mization, each will inform the other when it does so, but such
a teardown does not need to be signalled reliably, and neither
end keeps time-wait state. Later, if new packets arrive at the
sending EQIF, a new tunnel will be established. If a receiver
tears down a tunnel from a sending EQIF that has queued
packets, a new tunnel is immediately set up.

This simplicity allows the simple EQDS state machine in
Appendix A, it allows EQDS to be self-synchronizing if the
two endpoints end up in different states, and it minimizes
state requirements - something that is important for EQDS
implementation in hardware. We can get away with such a
lightweight protocol because the EQDS service model only
guarantees a best-effort attempt to avoid loss, duplication, or
reordering. A conventional transport protocol like TCP needs
to provide firmer guarantees to the application.

Reorder Queue. Per-packet ECMP greatly improves load
balancing, reducing in-network queuing and latency, but may
cause reordering. Trimming also causes reordering while
awaiting retransmission. To avoid performance problems with
higher-layer protocols, EQDS maintains a per-tunnel reorder
queue in the receiving EQIF. With minimal in-network queu-
ing, the delay difference between paths is small, so this queue
does not grow much and is bounded by a BDP.

Oversubscribed networks. When the network core is over-
subscribed and becomes a bottleneck, aggressive receiver-
driven transports can result in high trim rates or in high la-

EQIF 1

Wire

Destination
lookup Encap

EQIF 1 packets

EQIF 2

In Flight

RTX
Destination
lookup

Encap
EQIF 2 packets

Encap
to host C

Encap
to host B

to host A

to host A
Congestion
state for A

Figure 5: Transmit datapath for sending EQIFs

tency or loss when RTS is used. In such cases, EQDS will
need to be enhanced to take into account other congestion
signals such as ECN, latency or even in-band network teleme-
try[32] in addition to receiver pacing. As the receiver-driven
transport handles the high-dynamic-range incast case, such
congestion management only needs a relatively limited dy-
namic range and can be implemented by either the receiver
reducing its pull rate or by then sender reducing its pull target.
Developing such mechanisms is future work.

Incremental deployment. EQDS only encapsulates traffic
to configured internal address ranges, so external and legacy
traffic will also be present in a datacenter. How will they
coexist? EQDS’s packet spraying diffuses the effects of a
flow across many core links, greatly reducing its impact on
any legacy single-path flow. In our testbed when trimming is
enabled, we use two priority classes to separate EQDS and
non-EQDS traffic and ensure low latency for EQDS via small
buffers even in the presence of legacy “elephant” flows.

Strict prioritization is probably undesirable as load levels
rise, but weighted fair queuing between EQDS and non-EQDS
traffic classes can maintain low latency for EQDS flows in the
core, so long as the sprayed load-balanced EQDS aggregate
does not exceed its allocated share. On ToR uplinks where
EQDS traffic is less diffused, legacy “elephant” flows may
impact some EQDS paths more than others. EQDS offers
accurate per path latency and loss statistics that can be used
to perform load-adaptive routing between paths, avoiding
transient bottlenecks. Implementing these is future work.

6 Sending EQIF Specialization

Different types of traffic have different expectations of the
underlying datacenter network. While a single EQDS tunnel
protocol clocks all traffic from sending EQIF to receiving
EQIF, higher-level protocols with differing network expecta-
tions are supported by different specialized sending EQIFs.

Fig. 5 shows how sending EQIF behaves as a virtual inter-
face. Whenever a higher-layer protocol sends packets via that
interface, EQDS encapsulates and enqueues them, pending
sufficient credit being available. The sending EQIF maintains
one queue per tunnel, allocated on demand if one does not
already exist. When a packet is sent, it is moved from the send
to the in-flight queue, but not freed until it is ACKed. If is it

VM1
VM1

Network interface ARM core

Uplink rep

RDMA
EQIFVF1 VF1 rep

Guest VM1

RDMA
stack

Host Smart NIC

Physical port

Figure 6: RDMA EQIF implementation.

NACKed or a retransmit timer expires, it is moved to the tun-
nel’s retransmit queue. When credit is available, retransmitted
packets are sent first, then new ones.

Each sending EQIF provides a specific type of service.
We currently support three service classes: TCP-compatible,
RDMA, and native. They differ in their queue discipline and
in how feedback is presented to end-to-end traffic.

When multiple sending EQIFs are in use at the same host,
as in Figure 5, credit avoids overloading the receiver’s down-
link, but credit from multiple receivers can exceed the uplink
speed. When this happens, deficit round robin is used to share
the physical interface fairly between the various EQIF queues.
Queue priorities can also be configured if desired.

Multiple host stacks or virtual machines sending the same
traffic class can share the same EQIF. For example, QUIC
and TCP may use the same TCP-compatible EQIF, whereas
RDMA would use a different EQIF. None of these legacy
stacks need be aware they are running over EQDS.

TCP-compatible EQIF Class. Our TCP EQIF implements a
simple drop-tail queue for non-ECN traffic and a RED queue
for ECN-capable traffic. The goal of the queue is to absorb
traffic when TCP is sending faster than the receiver wants.
When the queue fills, a packet will be dropped. The queue
needs to be large enough that TCP’s congestion control can
operate and saturate the receiver’s link - typically this will be
upwards of 30 packets.

The worst case for TCP is when many flows incast to the
same receiver. With a default ten-packet initial window, pack-
ets will be queued in the EQIF queue until the receiver sends
credit, which may take some time. TCP’s 250 ms minimum
RTO time helps here - even large incasts can usually com-
plete within 250 ms. If packets are queued longer than this, an
RTO may occur, but our experience is that even this has little
impact on performance; TCP detects a spurious timeout via
the Eiffel algorithm[37, 36], corrects its congestion window,
and updates the RTO to prevent further timeouts.

We find that vanilla TCP running over EQDS almost always
outperforms TCP running natively, even when not compet-
ing with incompatible flows. Much of this win comes from
EQDS’s use of per-packet ECMP.

RDMA EQIF Class. RDMA requires a separate EQIF to
avoid fighting with other traffic, to avoid loss seriously im-
pacting RDMA performance, and to provide appropriate flow
control feedback to the RDMA implementation.

RDMA is typically implemented in the NIC. Ideally an
RDMA EQIF implementation would be coupled with the
hardware transport implementation to directly flow-control
RDMA traffic. We currently deploy our prototype RDMA
EQIF in a smart NIC, as shown in Fig. 6. We use port represen-
tors [8] to interpose on RDMA-enabled devices the SmartNIC
exposes to the host and its virtual machines.

Our EQIF does not modify the NIC’s RDMA implementa-
tion, but it does need to tell the sender to slow down when the
TX queue to a destination grows. Depending on the SmartNIC
model, we use different techniques to control the sending rate
of the RDMA engine. For the Stingray, we issue PFC PAUSE
packets to slow down the sender; this works well, but it has
the side effect of slowing all traffic coming out of the RDMA
engine, not just the one to the backlogged destination. The
BlueField 2 supports DCQCN, so our implementation uses
this to control RDMA. We could use ECN to signal DCQCN
flows to slow down, but we prefer to send congestion notifi-
cation packets (CNPs) directly from the sending EQIF to the
RDMA sender. This reduces the length of the DCQCN control
loop and allows one-time tuning of the DCQCN parameters to
this constant delay. Unfortunately, RDMA RC packets lack
the source QP number in their headers, which is needed for
sending back a response, so we develop a connection tracking
module [10] for RDMA CM, enabling CNP generation.

Our current smart NIC implementation moves packets from
the host to the ARM cores and then to the wire; with bidirec-
tional traffic the SmartNIC’s interconnect can become a bot-
tleneck. It should be possible to only move the packet headers
to the ARM cores, but our implementation does not support
this yet. To avoid our results being affected we configure our
RDMA testbed to a lower rate (10 Gbps). A NIC designed for
EQDS would not add this additional latency. Despite this, our
implementation increases RDMA performance in many cases
while allowing coexistence with other protocols.

The Native EQIF is the preferred option for performance-
oriented, EQDS-aware transports. It uses a shared memory
area to store packets with lockless descriptor rings used to
move packets to and from the EQIF via a zero-copy API. This
EQIF offers additional low level information to host transports
including the size of the TX buffer to the destination, the
size of the destination’s pull-queue, per-packet and per-path
network RTTs and delivery notifications.

Latency information provided by the Native EQIF is similar
to that provided by 1RMA, so for cases where core congestion
is common, delay-based congestion controllers such as Swift
[24] or Timely [28] can be implemented on top.

We have implemented eqdsperf,a performance testing tool
over the Native EQIF, as well as a lightweight UDP stack that
is optimized to run over EQDS. Applications using the UDP
socket API can simply be linked to our stack, either statically
at compile time, or dynamically using LD _PRELOAD.

7 Implementation

We implemented two versions of EQDS, one using DPDK
and one as a Linux kernel module. The goal is to add minimal
overhead, but inevitably there are tradeoffs to be made.

Our DPDK implementation was built with performance in
mind and uses two CPU cores, regardless of load. These can
be host CPU cores, but it is preferable to use the ARM cores
on a smart NIC. The main thread takes turns reading packet
batches from the host-facing and network-facing NICs. Once
read, packets are processed to completion. At the sender, this
includes NACKs and PULLs triggering the (re)transmission
of queued packets, and at the receiver trimmed packets elicit
NACKs while packets that fill a hole at the head of the reorder
queue trigger the release of waiting packets. The main thread
also checks for timer expiration, largely eliminating the need
for synchronization. A second thread is used to pace PULLs
and to send deferred ACKs, providing accurate PULL pacing at
the expense of burning a second core. When the NIC supports
fine-grained pacing (e.g. Intel Columbiaville), EQDS can
offload pull-pacing to the NIC, reducing CPU usage.

Our kernel implementation is aimed at being cheap and
easy to deploy. As is usual on Linux, outgoing packets are
processed in the context of the sending process. They are
captured by a hook after routing has taken place. If there is
enough credit, processing continues until they are handed to
the NIC’s driver. Inbound, EQDS acts like a UDP service;
all incoming packets, both data and control, are processed
in a soft IRQ and fed to a kernel UDP socket. Data packets
that can be forwarded straight away are re-injected into the
IP stack after decapsulation. If control or data packets have to
be sent back, a Layer 3 socket is used.

High Resolution Timers are used for PULL pacing with
their handlers executed in a soft IRQ. The downside of using
kernel timers is that their timing is at the mercy of the Linux
scheduler. This adds jitter to the PULL pacing. To mitigate
such jitter, senders must use higher window values than usual.

Offloads are key to achieving high TCP performance with
Linux, so our implementation leverages both TSO and GRO.
With TSO, TCP will send large segments, EQDS will en-
capsulate them, then an EQDS-unaware NIC will split the
encapsulated packet, copying the extra headers verbatim in
front of the inner TCP/IP headers. The problem is that all
the split packets will have the same EQDS sequence number.
Fortunately, due to a peculiarity in how TSO is performed,
there is a workaround. A NIC increments the IP ID of ev-
ery segment following the first. We send all EQDS packets
with an IP ID of zero, and leave gaps in the EQDS sequence
space. The receiver then adds the received IP ID to the re-
ceived sequence number to obtain the full sequence number.
Future EQDS-aware NICs would remove the need for this
workaround. Inevitably, using TSO causes a burst of unpaced
packets to be sent which, as with timer jitter, requires a small
increase in the window used by EQDS.

Figure 7: Permutation throughput in the
T2 testbed (BlueField-2 hosts).

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12

C
D

F
 (

%
)

Throughput (Gbps)

TCP/EQDS
NDP
TCP

MPTCP

Figure 8: Simulation: permutation
throughput in a 1024-node Fat Tree.

 0

 25

 50

 75

 100

 1 2 4 8 16 32 64 128

C
D

F
 (

%
)

FCT (ms)

TCP over EQDS/NDP
TCP over EQDS/RTS

TCP Baseline

Figure 9: FCT: 1MB flows from random
servers, closed loop (T1 testbed)

8 Evaluation

Datacenter networks have been shown to suffer from a num-
ber of pathologies including reduced throughput due to flow
collisions, high loss or delay due to incast, inflated latency
for RPC-style traffic and a dependency on compatible conges-
tion control mechanisms for network sharing. EQDS’s main
goal is to enable the deployment of known solutions to all
these problems in actual networks, and to make the resulting
performance available to unmodified host stacks.

The first part of our evaluation examines whether EQDS
helps mitigate these known pathologies and can boost per-
formance for regular datacenter applications. To ensure the
results are not specific to one host stack or deployment model
and do not depend on network support, we experiment with
unmodified TCP/IP (Linux) and RDMA NIC stacks (Blue-
Field 2, CX4), run EQDS both on the host and on two smart
NICs, and use both legacy and trimming-enabled networks.

We find that EQDS helps boost throughput of unmodified
TCP/IP and RDMA stacks by up to 30-40%, mitigating the
effects of collisions in a permutation traffic matrix (§8.1)
and for NVMe over Fabric traffic. It achieves near-perfect
incast behaviour with very small in-network queues both with
trimming (our testbed and simulation) and RTS (on Amazon
EC2), halving the latency and doubling the throughput of a
micro-service based social network application benchmark
on busy networks, as well as speeding up memcached by
10-30x (§8.2). Finally, we show that EQDS helps conflicting
upper-layer congestion controllers nicely share the underlying
network without any in-network support (§8.3).

In the second part we seek to understand whether EQDS
introduces problems of its own. The biggest concerns are
host overheads such as EQDS software’s memory and CPU
costs, its ability to handle high link speeds and dependence
on specific hardware for performance.

In our evaluation we used two small-scale testbeds: T1 is
a testbed we used for TCP/IP tests (10 servers) and T2 for
mixed RDMA and TCP/IP tests (6 servers). Both testbeds
used leaf-spine topologies and support trimming, but can also
be configured with drop-tail/ECN; a detailed testbed descrip-
tion is provided in Appendix B. To test behaviour at scale and
behaviour over legacy networks we use a large scale deploy-
ment in Amazon EC2 as well as simulation.

8.1 Improving throughput

TCP and RDMA require in-order packet delivery to function
well, so datacenters switches hash the packet 5-tuple to select
one of many equal-length paths to the destination. However,
when the number of flows is small and the flows are high band-
width, such placement can randomly place multiple flows on
the same link causing congestion. Prior work has shown that
flow collisions degrade performance in folded Clos topolo-
gies [11, 38] by up to 60% in the worst-case where a per-
mutation traffic matrix is used, where each host sends to and
receives from one other host. EQDS’s per packet multipath
should avoid such performance loss, at the cost of performing
reordering in the receiving EQIF. We have run permutation
experiments for RDMA in testbed T2 and for TCP in testbeds
T1 and T2 as well as in simulation at larger scale.

Figure 7 shows that EQDS successfully spreads single flow
TCP and RDMA traffic over all the available paths without
causing reordering problems. TCP and RDMA flows running
over EQDS achieve 22Gbps on average (maximum 24Gbps)
in a permutation traffic matrix, compared to an average of
12-14Gbps without EQDS.

Our simulation results in Figure 8 explore behaviour at
larger scale (FatTree with k=16, 1024 servers, 10Gbps NICs).
Flow collisions hurt TCP badly, yielding only 40% of the
network capacity. Multipath TCP[38], a variant of TCP that
spreads traffic over multiple subflows (8 in our experiment)
fares better with mean utilization close to 90%. NDP’s packet
spraying enables it to achieve near-optimal throughput. Fi-
nally, TCP over EQDS benefits from packet spraying but
avoids the costs of reordering which is handled by EQDS,
achieving similar performance to NDP.

Permutation traffic matrices highlight worst-case behaviour,
with infinite flows and the smallest number of flows possible.
Do collisions actually matter for other traffic matrices, for
shorter flows, and for real applications? We examine this next.

1MB flows, random traffic matrix. On our testbed we run a
workload where each server downloads a 1MB object from
another randomly chosen server in a closed-loop, mimicking
a storage workload over TCP. We measure flow completion
times and plot them in Figure 9. EQDS lowers median and
95th percentile completion times by 2.4x and 2x respectively.

We also ran the same experiment with EQDS using request-

 0

 20

 40

 60

 80

 100

 8 16 32 64 128
 256

 512
 1024

 2048

36us

570us

C
D

F
 (

%
)

Ping latency (us)

Baseline idle
EQDS idle

EQDS busy
Baseline busy

Figure 10: Ping latency: target is idle or
busy with 9 incoming TCPs (T1 testbed).

 1

 4

 16

 64

 256

 1024

 4096

 16384

 0 100 200 300 400 500 600 700 800 900 1000

R
e

q
u
e
st

 la
te

n
cy

 (
m

s)

Offered load (req/s)

Native
Native Busy

EQDS
EQDS Busy

Figure 11: DeathStarBench in the T1
testbed: request latency

 0

 100

 200

 300

 400

 500

 600

 0 100 200 300 400 500 600 700 800 900 1000

T
h

ro
u

g
h

p
u
t

(r
e

q
/s

)

Offered load (req/s)

Native
Native Busy

EQDS
EQDS Busy

Figure 12: DeathStarBench in the T1
testbed: throughput

to-send and without trimming support in the switches. The
flow completion times (FCT) for this setup are, as expected,
slightly larger than the NDP-based implementation due to
the additional RTT needed at the beginning of transfers. Still,
EQDS/RTS halves the completion time of TCP compared to
baseline, both in the median and at 95%. At 99% all variants
have similar FCTs, and beyond that EQDS can take longer
due to missing optimizations in the code for short flows.

NVMeOF. We run a disaggregated storage service using a
Storage Performance Development Kit (SPDK) NVMeOF-
RDMA target with a null block device (i.e. no storage access)
to stress the network subsystem. The NVMeOF-RDMA pro-
tocol is target-driven, with the server reading or writing to
memory buffers in the client after coordinating the access via
rendezvous. This involves both latency-sensitive operations
for control and throughput-hungry operations for data.
We run the NVMeOF targets and clients on separate ToRs.
Each client accesses the targets round-robin, using the SPDK
perf utility to generate the workload. Figure 13 shows the
throughput of random writes and reads of 64 KB blocks while
varying the queue depth of the NVMeOF target. EQDS with
its multipath support increases both peak read and write
throughput and reduces standard deviation. Note that EQDS
requires deeper NVMeOF queues to achieve higher through-
put due to the added latency of our BlueField setup (§8.5).

8.2 Improving application latency

In deployed networks, there is a strict tradeoff between sup-
porting many-to-one incast traffic gracefully, typically by pro-
visioning large shared buffers in the network, and the latency
of request-response applications such as micro-services or in-
memory key-value storage (e.g. memcached). EQDS solves
this trade-off by moving the buffering to the sending hosts,
promising to achieve both low latency and good incast be-
haviour simultaneously.

Many to one traffic. To understand the baseline behaviour,
we run large many to one workloads (850 iperf senders to the
same receiver) in both simulation and on Amazon EC2 VMs.

We use htsim simulation to understand the behaviour of
TCP NewReno when the destination link runs at 10Gbps, and
we vary the size of bottleneck switch buffer. Figure 14 is

Figure 13: NVMeOF in the T2 testbed (BlueField-2).

a CDF of the flows’ mean throughput. When the buffer is
small (approx. 1 packet per flow), there is a large variance
of throughput, with many flows starved. As we increase the
buffer to around 100 packets for each flow, TCP can share
capacity much more evenly, and there is no starvation. We also
show the result when the switches implement fair-queuing,
which further reduces variance and reduces buffer needs.

We run the same workload over EQDS, with the EQIF per-
destination buffer set to 100 packets and a 15 packet buffer at
the bottleneck. EQDS perfectly shares the bottleneck capacity,
emulating a fair queue at the bottleneck link.

While our simulations show that TCP many-to-one requires
significant buffering to work well without EQDS, what is the
actual behaviour in production datacenters? We rented VMs
on Amazon EC2 (m5.8xlarge for the receiver, and m5.xlarge
for all others, 10Gbps link speeds) and deployed the Linux
kernel version of EQDS, configured to run in RTS mode, as
EC2 does not currently implement trimming.

We ran the same workload, with 850 hosts running iperf to
one receiver and plot the results in Figure 15. Note the linear x
axis for this plot: many to one traffic in EC2 works fairly well,
similar to the simulated fair-queuing results. TCP running
over EQDS in EC2 achieves almost perfect sharing and 4%
better throughput than the baseline, matching our simulations.

To achieve such good sharing, it appears that EC2 uses
large buffers.We measure these buffers by pinging the same
destination from an idle VM before and during the incast. Fig-
ure 16 is a CDF of ping latency. EC2 ping latency increases
163x from 55µs to 9ms during the 10Gbps incast, indicating
that a buffer of around 11MB exists in this network. In con-
trast, EQDS achieves similar many-to-one throughput with
only a 21µs increase in ping latency.

Is this behaviour specific to EC2 or the RTS backend? We

 0

 20

 40

 60

 80

 100

 0.25 1 4 16 64 256 1024

Buffer size(pkts)

C
D

F
 (

%
)

Throughput (Mbps)

1K
10K

100K
1K,fair
EQDS

Figure 14: Simulation: 850 to 1 traffic,
varying size of bottleneck buffer.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 5 10 15 20 25

C
D

F
 (

%
)

Throughput (Mbps)

Baseline
EQDS

Figure 15: Amazon EC2: 850 to 1 traffic,
kernel EQDS, RTS mode

 0

 20

 40

 60

 80

 100

 32 64 128
 256

 512
 1024

 2048
 4096

 8192

21us
9100us

C
D

F
 (

%
)

Ping latency (us)

Baseline Idle
EQDS Idle

EQDS Busy
Baseline Busy

Figure 16: Ping latency (EC2): target is
idle or busy with 850 incoming TCPs.

ran a similar experiment in our testbed using trimming instead
of RTS. Figure 10 shows the results. When the destination is
busy, EQDS with trimming results in a 36µs increase in ping
RTT, similar to RTS on EC2. Without EQDS, the increase is
around 500µs because our switch buffers for TCP are 1MB
(less than EC2) and the link speed is 25Gbps. In summary,
EC2 appears to be using large buffers to cope with incast.
How does this affect latency sensitive traffic?

Memcached. We installed memcached on our EC2 destina-
tion VM and used memcslap, a benchmarking client, to mea-
sure server performance by issuing 1000 GET/PUT opera-
tions in a closed-loop manner. The mean request latency for
an idle memcached server in EC2 is 700us. When running
over EQDS, the same request takes around 900us due to the
additional kernel processing EQDS does and the use of RTS.

When the destination is busy with 100 iperf clients sending
to it, the mean request latency over EQDS increases 3x to
3ms, mostly due to sharing bandwidth with iperf, compared to
a 140x increase to 100ms without EQDS due to large buffers.
With 850 iperf clients sending, memcached over EQDS has
a mean request latency of 23ms due to sharing bandwidth
with 8.5 times more flows, compared to 400ms over native
EC2. Overall, EQDS reduces memcached request latency for
a busy EC2 server by 20 to 30x compared to the baseline.

Micro-service apps. We ran the latency-sensitive social net-
work application of DeathStarBench [13] over kernel EQDS.
We distributed the micro-service nodes to ensure that most
requests are not local and must use the network, and used wrk
to generate requests in a closed-loop manner.

We tested two scenarios: one where the network was idle,
and one where high-throughput traffic going to the same hosts
saturated the links filling the switch buffers. We note that the
social network application does not generate much traffic –
100Mbps peak – but is latency sensitive so we expect to see
an impact of longer network latencies in our “busy” scenario.

Figures 11 and 12 show the results. On an idle network
social network requests take ∼2ms to complete, with little
difference between the baseline and EQDS. Our deployment
can sustain a request load of about 500 requests per second
after which DSB saturates the CPU. When the network is
busy, however, EQDS reduces request latency by 50% and
can sustain double the baseline request load.

8.3 Sharing the network

EQDS allows fine-grained host sharing policies without in-
network support; we examine some interesting scenarios.

Non-responsive traffic competing with TCP. Consider the
scenario in Figure 17 where a receiver in our testbed receives
data from 4 TCP senders and then a UDP sender starts sending
at line-rate (emulated with iperf3). As the UDP flow does not
respond to congestion, the testbed network run in legacy mode
allows the UDP flow to use nearly 25Gbps of bandwidth,
starving the TCP flows. With EQDS (in trimming mode in
this experiment), the UDP sender is throttled at the sending
EQIF which enforces perfect ingress sharing, without any
need for fair-queuing in the network.

Congestion controllers being nice. In fact, EQDS can en-
able any combination of existing congestion controllers to
co-exist fairly without any in-network support. In figure 18 we
show the sharing results when two senders send to the same
receiver, with one sender using Cubic[17] and the other using
the congestion control algorithms shown on the x axis label.
We used all the congestion control implementations avail-
able in the Linux kernel, as well as the Mellanox DCQCN
implementation. EQDS is able to fairly share the receiver’s
link without in-network support for almost all congestion con-
trollers, in contrast to the status quo where latency-based
schemes such as BBR[4] are starved by loss-based ones (e.g.
Cubic). One exception are the Vegas[2] controllers that cannot
utilize the 25Gbps link over EQDS when running alone, and
that receive a smaller share when competing against Cubic.
This appears to be due to Vegas measuring a small base RTT
and stopping the window increase before it reaches a BDP.

The amount of buffering in the EQDS TX queue depends,
as expected, on the congestion control algorithm. BBR is best,
with an average latency of 243µs when sending at line rate,
compared to DCTCP (K=16) at 435µs and Cubic at 1315µs.

RDMA versus TCP. To see how EQDS aids effective co-
existence between different host stacks, we run a single TCP
and n RDMA flows to the same destination in T2 (BlueField
NICs). Figure 19 shows the bandwidth distribution among
competing flows as the number of RDMA flows varies from
zero to four. Without EQDS, TCP fills the switch buffers
while DCQCN causes RDMA to back off, with some RDMA

 0

 5

 10

 15

 20

 25

 0 10 20 30

UDP

TCP

T
h
ro

u
g

p
u
t

(G
b

p
s)

Time (s)

(a) Network sharing

 0 10 20 30

UDP

TCP

Time (s)

(b) EQDS sharing

Figure 17: Bandwidth sharing (5 to 1): one
non-responsive UDP sender (testbed T1)

bbr
bic

cdg
cubic

dctcp

highspeed

htcp
hybla

illinois

lp nv reno
scalable

vegas

veno
w
estw

ood

yeah
dcqcn

C
u
b
ic

O
th
e
r

C
u
b
ic

O
th
e
r

E
Q
D
S

C
u
b
ic

O
th
e
r

C
u
b
ic

O
th
e
r

N
a
tiv
e

Figure 18: Capacity sharing between TCP
variants, with and without EQDS (testbed T1)

Figure 19: RDMA and TCP
network sharing (testbed T2)

flows being starved. With EQDS, data is buffered at the send-
ing hosts and the bandwidth allocation is determined by the
receiver, protecting RDMA and sharing the bandwidth fairly.

NVMeOF in parallel with a TCP shuffle. To understand
sharing beyond a single bottleneck link, and to also test the
CX4 RDMA stack over EQDS, we run the NVMeOF RDMA
benchmark (§8.1) in parallel with TCP traffic emulating a
MapReduce shuffle operation on the T2 testbed (CX4 hosts).
Specifically, three nodes on one ToR run both iperf senders
and NVMeOF targets. These three send to three nodes on an-
other ToR running both iperf receivers and NVMeOF clients
that perform random reads.

We observe that with EQDS the TCP shuffle alone is about
30% faster than without EQDS (26.1 Gbps vs 19.6 Gbps),
in line with the previous experiments. When both TCP and
RDMA run concurrently without EQDS, the shuffle through-
put drops to 17.6 Gbps and NVMeOF drops to 2.56 Gbps
– far from the optimal fair share. Under EQDS, shuffle and
NVMeOF achieve 15.8 Gbps and 10 Gbps respectively, which
is both a fairer allocation and higher overall throughput.

8.4 EQDS in legacy networks

To investigate EQDS with an oversubscribed core, we inter-
connect two ToRs in our T1 testbed with two 25Gbps spine
links. Fair queuing is enabled. One ToR hosts three servers (2
at 100Gbps, 1 at 10Gbps); the other ToR hosts eight clients
(mix of 10 and 25Gbps links). Each client connects to one
server and continuously requests a 1MB object in a closed-
loop, creating a new TCP connection each time. Clients are
equally balanced across servers.

We increase the number of active clients from 1 (core uti-
lization ≈50%) up to 8 (400% core over-subscription). We
plot the median and 99% FCTs for baseline TCP, TCP-over-
EQDS with trimming and TCP-over-EQDS using RTS. When
the core is lightly loaded, EQDS’s packet-level load balancing
gives slightly smaller median (Figure 20) and 2x to 5x smaller
99th percentile FCT (Figure 21). As we add more clients and
the core becomes overloaded, EQDS ends up behaving simi-
larly to the native baseline, while RTS is slightly slower than
baseline as it requires a large amount of buffering. For EQDS
with trimming, as the core gets busier the trim rate increases
and each packet can be re-sent multiple times. While this does

not affect FCT, it is undesirable; it would be better to reduce
the pull rate when core congestion is detected.

Legacy “elephant” traffic. To understand how legacy traffic
coexists with EQDS, we use the same configuration but with
two clients downloading 1MB objects from two servers, and
create a long-lasting iperf3 flow to another client. We vary
the throughput for this legacy flow from 0 to 25Gbps and
measure the FCTs of the other flows. Figure 22 shows how
flow collisions on the spine between native 1MB flows and the
elephant flow affects FCT: the median grows by 2.5x when
the elephant flow fully occupies the spine link. With EQDS,
packet spraying helps mitigate the effects of the elephant flow,
and the increase in FCT is modest. A future implementation
of load-aware routing should improve things further.

8.5 Host processing evaluation for EQDS
Our experiments so far have looked at how EQDS can help
existing stacks, and used 25Gbps (our testbeds) and 10Gbps
link speeds (EC2, simulation). We now examine the perfor-
mance and overheads of our two EQDS implementations and
evaluate how they perform at higher speeds. We tested using
several configurations:

Setup 1. DPDK on the host, both with native transports and
underneath the VM stack, where EQDS takes the role of
the software switch used in virtualization.

Setup 2. DPDK on an SoC-based SmartNIC (Broadcom
Stingray PS225 or Mellanox BlueField 2) with support
for legacy TCP and RDMA traffic.

Setup 3. DPDK on the host, processing RDMA traffic to
and from a Mellanox CX4 NIC.

Setup 4. Our Linux Kernel 5.4 implementation, with EQDS
kernel module running underneath the TCP/IP stack.

The DPDK implementation is the most versatile and per-
forms best, though this depends on the higher level stack and
the setup used (Figure 23). The best performance is given
by eqdsperf in setup 1 using the zero-copy native EQDS
transport. Between two 2.5GHz Xeon Silver 4215 machines
with Intel Columbiaville NICs, eqdsperf achieves 40Gbps
with 1.5KB packets and 100Gbps with 4KB packets. The bot-
tleneck is the sender; with two senders to the same receiver,
the link saturates with 3KB packets.

 0.25

 0.5

 0.75

 1

 1.25

 1.5

 1.75

 2

 50 100 150 200 250 300 350 400

M
e
d
ia

n
 F

C
T

 (
m

s)

Core oversubscription (%)

EQDS/Trimming
Native

EQDS/RTS

Figure 20: Median FCT for 1MB flows
(oversubscribed core).

 0.5

 1

 1.5

 2

 2.5

 3

 100 200 300 400

9
9
%

 F
C

T
 (

m
s)

Core oversubscription (%)

EQDS/Trimming
EQDS/RTS

Native

Figure 21: 99% FCT for 1MB flows
(oversubscribed core).

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 5 10 15 20 25

M
e
d
ia

n
 F

C
T

 (
m

s)

Elephant flow throughput (Gbps)

EQDS/Trimming
Native

EQDS/RTS

Figure 22: Median FCT with an elephant
legacy flow.

Setup Higher Throughput (Gbps) Latency
stack Link 1.5KB/9KB ping(us)

(1) Host eqdsperf 100 40/98 15(+1)
(1) Host Linux VM 100(40) 27/55 18(+1)
(2)PS225 Linux 25 23.6/24.1 31(+12)
(2)PS225 RDMA 25 23.5/24.1 18(+12)
(2)Blue2 Linux 100 23/49 22(+16)
(2)Blue2 RDMA 100 23/49 22(+16)
(3)Host/CX4RDMA 10 9.6/9.6 13(+9)

Figure 23: EQDS DPDK performance Figure 24: eqdsperf throughput (setup 1)

Stack MTU TSO off
GRO off

TSO on
GRO on

Linux 1.5KB 17Gbps 40Gbps
EQDS 1.5KB 5Gbps 27Gbps
Linux 9KB 40Gbps 60Gbps
EQDS 9KB 28Gbps 55Gbps

Figure 25: EQDS Kernel
performance (setup 4)

In Setup 1, when we run EQDS underneath Linux VMs in
KVM using vhost-user networking, it achieves 27Gbps with
1.5KB packets compared to 40Gbps for the baseline (testpmd).
The cost here for both testpmd and EQDS comes from the
packet copy from the guest to the host.

In Setup 2 we run EQDS on both the Broadcom PS225
SmartNIC and Mellanox’s BlueField 2 NIC. Our EQIF uses
one NIC core for each of the two links and one for credit
pacing. On the Stingray, EQDS saturates the link with a single
core when the MTU is 1.5KB or larger. On the PS225 the
results are similar with EQDS reaching 50Gbps with an 8KB
MTU. We note that SmartNIC ARM cores are weaker than
x86 cores and memory bandwidth seems limited; reaching
100Gbps may require more offloading.

In Setup 3 we divert RDMA traffic from a Mellanox
ConnectX-4 Lx NIC via a host core. This is not ideal as
it requires an extra round trip across the PCIe bus, but demon-
strates RDMA-over-EQDS even without a smart NIC. Since
the CX4 PCIe bandwidth is 56Gbps, we limit the link band-
width to 10Gbps to avoid a PCIe bottleneck. With EQDS,
the bandwidth of a single RDMA flow between two RDMA
nodes remains the same as with baseline RDMA (Table 23),
but the additional PCIe round-trip increases median latency
by 9 µs on an unloaded system and by 14 µs under load.

In Setup 4 we run EQDS in a kernel module. Figure 25
shows TCP performance with and without EQDS, and ex-
plores the effect of TCP offloads. Our kernel implementation
can reach 55Gbps (one core) with jumbograms, or 27Gbps
with a 1.5KB MTU. TCP’s dependence on offload support is
clear. EQDS increases CPU utilization at the sender by 2%
and at the receiver by 5% when running an iperf at 55Gbps.

Tunnel setup overhead. When EQDS tunnels are already

set up, EQDS only adds a few µs of latency, as shown in
Fig. 23. When a new host is contacted, however, a tunnel is
setup dynamically using a zero-RTT approach. We measure
this by tearing down tunnels, then sending a series of pings;
the difference between the first ping time and subsequent
ones is around 20µs. This setup latency is due to memory
initialization costs for the tunnel data structures.

EQDS memory consumption. How does EQDS memory
consumption scale with the size of the datacenter? There are
three categories of memory to consider.

A Sending EQIF buffers packets awaiting transmission. For
TCP, we use 100 packets per destination by default, but we
find that if needed this can be reduced as low as four packets
per destination when sending to many receivers. For RDMA,
the upper marking threshold is set to 375 packets.

The receiving EQIF has a reorder buffer per sender. In the
worst case with faulty links, the buffer can reach the EQDS
window which is between 50 packets (DPDK) and 150 pack-
ets (kernel). In practice this is limited to less than 10 packets.

In-flight packets are buffered at the sender pending retrans-
mission, but the pending buffer size is limited by the BDP. We
verify this by starting iperfs to an increasingly larger number
of receivers. The total number of in-flight packets across all
tunnels saturates at around 400 packets (NIC ring size plus
one BDP) regardless of the number of receivers.

With 1.5GB of DRAM, EQDS can buffer packets for
10,000 active destination; this fits in the RAM of the Smart-
NICs we used (8-16GB) as well as the hosts. In practice both
the number of active destinations and actual buffer utilization
are smaller; on EC2 the receiver’s memory usage for EQDS
did not exceed 100MB with 850 senders.

9 Related work
Tunneling is widely used in datacenters for security isolation
of traffic (e.g. VXLAN and GRE). These protocols, however,
do not offer any performance isolation between tenants. Rate
limiting is typically used in public clouds, but this offers
limited isolation, especially for incast workloads.

Numerous research works examined the performance shar-
ing problem [40, 34, 35]. Seawall [40] and ElasticSwitch [35]
use rate-limiting between each pair of hosts in a datacenter
to manage sharing, and use centrally computed weights to
achieve fair sharing among different tenants. FairCloud [34]
discusses fundamental tradeoffs in sharing cloud networks.
This line of works relies on rate limiting and needs large in-
network queues to cope with incast; it also doesn’t improve
utilization of multipath networks.

Virtualized congestion control works such as VCC [6] and
AC/DC [19] propose ways of deploying new TCP congestion
variants without VM changes. Both keep per-flow conges-
tion state in the hypervisor, applying rate-limiting techniques
(such as receive window reduction) to force the VM stack
to reduce its rate; both show how DCTCP can be deployed
in this way. OnRamp [3] is a recent proposal that aims to
improve the fast start phase of transport protocols by tracking
fine-grained RTT measurements per flow, in the hypervisor,
and then stopping packets from entering the network when
latency increases above a certain threshold. This line of work
does not allow multipath transmission of TCP packets or
other network-specific enhancements, and still requires large
in-network buffers to cope with incast.

EQDS takes the next logical step over this line of prior
work: it completely decouples host stacks from the network
via edge queues, thus supporting multiple higher layer trans-
ports (e.g. TCP, RDMA or native). EQDS does not do rate lim-
iting (because it can build large queues), but uses a receiver-
driven control loop instead, ensuring that network queue
depths are kept as low as possible. Any sharing outcome
for clouds (e.g., [34]) can be configured using the primitives
EQDS provides to higher layers. The key benefit of EQDS is
decoupling the higher layer transports from lower layer imple-
mentations; this enables regular TCP run over packet-sprayed
networks, among others.

Fastpass [33], pHost [14], Aeolus [20], NDP [18],
Homa [31], qJump [15] are techniques that show how one can
operate a network at high load and small queues. In-band net-
work telemetry [32] provides accurate congestion information
to endpoints that can be used in over-subscribed topologies
(e.g. HPCC [25]). In contrast to all these transport or conges-
tion control protocols, EQDS is a congestion tunneling layer
that is meant to allow other transports to operate on top; it can
use the mechanisms proposed by any of these or other, yet-to-
be-invented, mechanisms to drive packet pacing and ensure
that the network core is used efficiently, but it also allows to
deploy them transparently to user applications. Our imple-
mentation implements both NDP [18] and a request-to-send

variant that does not require trimming.
New transport stacks like PonyExpress [27] or eRPC [23]

show the benefits of kernel bypass to support novel APIs, but
they face an uphill battle in deployment. EQDS allows such
transports to be deployed without changes to the network.

10 Conclusions and next steps
EQDS is a new network layer that provides strong perfor-
mance isolation among co-existing transports by pulling the
shared queues out of the data center network core and moving
them to the edge. More importantly, it introduces a new data-
gram service abstraction which fully decouples the transport
services above it from the network implementation under-
neath, thus enabling independent evolution of these layers
while ensuring future compatibility among them.

EQDS is designed for gradual adoption. From the appli-
cation perspective, RDMA and TCP EQIFs allow seamless
deployment of EQDS without any application modifications.
In the longer term we envision the emergence of application
protocols implemented atop and optimized for EQDS-native
APIs, thereby taking full advantage of the improved visibility
into the network performance that they offer.

From the network infrastructure perspective, one can use
our software-only implementations in Linux kernel, Smart-
NIC or/and host that allow the benefits of EQDS isolation to
be reaped at low performance cost, and can also run without
switch support for packet trimming.

The NIC implementation is ideal from a deployment point
of view, as it is cleanly separated from the host software,
which can use offloading support as before. Our smart NIC
setup, however, adds a little unnecessary latency (12-16us)
and is limited to 25Gbps per core at 1.5KB MTU. These limi-
tations should be fixable with NIC ASIC support for EQDS.

There are many examples of existing ASIC and FPGA
implementations of connected transport protocols, ranging
from RDMA [9, 21, 22, 41], to TCP offload engines [30, 12,
39]. An EQDS NIC would build upon these works, and its
hardware version might actually be simpler: keeping state
for each connected endpoint rather than per-flow means more
connections could be stored in on-chip memory, and its re-
laxed ordering and reliability guarantees allow implementing
a simpler state machine. By offloading control packet pro-
cessing, we expect to shorten the EQDS control loop delay
significantly, and reducing its jitter, thus minimizing switch
buffer usage. Furthermore, offloading connection setup and
teardown logic would allow low latency small flows to get
close to native performance.

Acknowledgements. The authors thank Mihai Brodschi for
implementing the UDP stack over EQDS, and our shepherd
and the anonymous reviewers for their feedback. We thank
Intel, Broadcom and Nvidia for providing hardware for testing.
This work was partly funded by CORNET, a research grant
of the European Research Council (no. 758815).

References

[1] Mohammad Alizadeh, Albert Greenberg, David A.
Maltz, Jitendra Padhye, Parveen Patel, Balaji Prab-
hakar, Sudipta Sengupta, and Murari Sridharan. “Data
Center TCP (DCTCP)”. In: Special Interest Group on
Data Communication (SIGCOMM). ACM, 2010.

[2] L.S. Brakmo and L.L. Peterson. “TCP Vegas: end to
end congestion avoidance on a global Internet”. In:
IEEE Journal on Selected Areas in Communications
13.8 (1995), pp. 1465–1480.

[3] “Breaking the Transience-Equilibrium Nexus: A New
Approach to Datacenter Packet Transport”. In: 18th
USENIX Symposium on Networked Systems Design
and Implementation (NSDI 21). USENIX Association,
Apr. 2021.

[4] Neal Cardwell, Yuchung Cheng, C. Stephen Gunn,
Soheil Hassas Yeganeh, and Van Jacobson. “BBR:
Congestion-Based Congestion Control”. In: ACM
Queue 14, September-October (2016), pp. 20–53.

[5] Yanpei Chen, Rean Griffith, Junda Liu, Randy H. Katz,
and Anthony D. Joseph. “Understanding TCP In-
cast Throughput Collapse in Datacenter Networks”.
In: Workshop on Research on Enterprise Networking
(WREN). ACM, 2009.

[6] Bryce Cronkite-Ratcliff, Aran Bergman, Shay Var-
gaftik, Madhusudhan Ravi, Nick McKeown, Ittai Abra-
ham, and Isaac Keslassy. “Virtualized Congestion Con-
trol”. In: SIGCOMM ’16. Association for Computing
Machinery, 2016, pp. 230–243.

[7] Steve Deering. Watching the waist of the internet hour-
glass. ICNP plenary. 1998.

[8] DPDK. DPDK Porgrammer’s Guide » Switch Rep-
resentation within DPDK Applications. 2019. URL:
https://doc.dpdk.org/guides-19.11/prog_
guide/switch_representation.html.

[9] D. Dunning, G. Regnier, G. McAlpine, D. Cameron,
B. Shubert, F. Berry, A. M. Merritt, E. Gronke, and C.
Dodd. “The Virtual Interface Architecture”. In: IEEE
Micro 18.2 (Mar. 1998), pp. 66–76.

[10] Haggai Eran. libconntrack-cm – Connection Tracking
for RDMA CM. 2022. URL: https://github.com/
acsl-technion/libconntrack-cm.

[11] Mohammad Al-Fares, Sivasankar Radhakrishnan,
Barath Raghavan, Nelson Huang, and Amin Vahdat.
“Hedera: Dynamic Flow Scheduling for Data Center
Networks”. In: Networked Systems Design and Imple-
mentation (NSDI). USENIX Association, 2010.

[12] W. Feng, P. Balaji, C. Baron, L.N. Bhuyan, and D.K.
Panda. “Performance characterization of a 10-Gigabit
Ethernet TOE”. In: 13th Symposium on High Perfor-
mance Interconnects (HOTI’05). 2005, pp. 58–63.

[13] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty,
Priyal Rathi, Nayantara Katarki, Ariana Bruno, Justin
Hu, Brian Ritchken, Brendon Jackson, Kelvin Hu,
Meghna Pancholi, Brett Clancy, Chris Colen, Fukang
Wen, Catherine Leung, Siyuan Wang, Leon Zaruvinsky,
Mateo Espinosa, Yuan He, and Christina Delimitrou.
“An Open-Source Benchmark Suite for Microservices
and Their Hardware-Software Implications for Cloud
and Edge Systems”. In: Proceedings of the Twenty
Fourth International Conference on Architectural Sup-
port for Programming Languages and Operating Sys-
tems (ASPLOS). Apr. 2019.

[14] Peter X. Gao, Akshay Narayan, Gautam Kumar,
Rachit Agarwal, Sylvia Ratnasamy, and Scott Shenker.
“pHost: Distributed Near-optimal Datacenter Transport
over Commodity Network Fabric”. In: Conference on
Emerging Networking Experiments and Technologies
(CoNEXT). ACM, 2015.

[15] Matthew P. Grosvenor, Malte Schwarzkopf, Ionel Gog,
Robert N. M. Watson, Andrew W. Moore, Steven Hand,
and Jon Crowcroft. “Queues Don’t Matter When You
Can JUMP Them!” In: 12th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
15). USENIX Association, May 2015, pp. 1–14.

[16] Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav
Soni, Jianxi Ye, Jitu Padhye, and Marina Lipshteyn.
“RDMA over Commodity Ethernet at Scale”. In: Spe-
cial Interest Group on Data Communication (SIG-
COMM). ACM, 2016.

[17] Sangtae Ha, Injong Rhee, and Lisong Xu. “CUBIC:
A New TCP-Friendly High-Speed TCP Variant”. In:
SIGOPS Oper. Syst. Rev. 42.5 (July 2008), pp. 64–74.

[18] Mark Handley, Costin Raiciu, Alexandru Agache, An-
drei Voinescu, Andrew W. Moore, Gianni Antichi, and
Marcin Wójcik. “Re-architecting Datacenter Networks
and Stacks for Low Latency and High Performance”.
In: Special Interest Group on Data Communication
(SIGCOMM). ACM, 2017.

[19] Keqiang He, Eric Rozner, Kanak Agarwal, Yu (Ja-
son) Gu, Wes Felter, John Carter, and Aditya Akella.
“AC/DC TCP: Virtual Congestion Control Enforcement
for Datacenter Networks”. In: SIGCOMM ’16. Associ-
ation for Computing Machinery, 2016, pp. 244–257.

[20] Shuihai Hu, Wei Bai, Gaoxiong Zeng, Zilong Wang,
Baochen Qiao, Kai Chen, Kun Tan, and Yi Wang. “Ae-
olus: A Building Block for Proactive Transport in Dat-
acenters”. In: SIGCOMM ’20. Association for Com-
puting Machinery, 2020, pp. 422–434.

https://doc.dpdk.org/guides-19.11/prog_guide/switch_representation.html
https://doc.dpdk.org/guides-19.11/prog_guide/switch_representation.html
https://github.com/acsl-technion/libconntrack-cm
https://github.com/acsl-technion/libconntrack-cm

[21] InfiniBand Trade Association (IBTA). About Infini-
Band. (Accessed: May 2021). URL: https://www.
infinibandta.org/about-infiniband/.

[22] InfiniBand Trade Association (IBTA). The RoCE Ini-
tiative. (Accessed: May 2021). URL: https://www.
infinibandta.org/roce-initiative/.

[23] Anuj Kalia, Michael Kaminsky, and David G. Ander-
sen. “Datacenter RPCs Can Be General and Fast”. In:
NSDI’19. USENIX Association, 2019, pp. 1–16.

[24] Gautam Kumar, Nandita Dukkipati, Keon Jang, Hassan
M. G. Wassel, Xian Wu, Behnam Montazeri, Yaogong
Wang, Kevin Springborn, Christopher Alfeld, Michael
Ryan, David Wetherall, and Amin Vahdat. “Swift: De-
lay is Simple and Effective for Congestion Control in
the Datacenter”. In: SIGCOMM ’20. Association for
Computing Machinery, 2020, pp. 514–528.

[25] Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan
Zhuang, Fei Feng, Lingbo Tang, Zheng Cao, Ming
Zhang, Frank Kelly, Mohammad Alizadeh, and Minlan
Yu. “HPCC: High Precision Congestion Control”. In:
SIGCOMM ’19. Association for Computing Machin-
ery, 2019, pp. 44–58.

[26] Yuanwei Lu, Guo Chen, Bojie Li, Kun Tan, Yongqiang
Xiong, Peng Cheng, Jiansong Zhang, Enhong Chen,
and Thomas Moscibroda. “Multi-Path Transport for
RDMA in Datacenters”. In: 15th USENIX Symposium
on Networked Systems Design and Implementation
(NSDI 18). USENIX Association, Apr. 2018, pp. 357–
371.

[27] Michael Marty, Marc de Kruijf, Jacob Adriaens,
Christopher Alfeld, Sean Bauer, Carlo Contavalli,
Michael Dalton, Nandita Dukkipati, William C. Evans,
Steve Gribble, Nicholas Kidd, Roman Kononov, Gau-
tam Kumar, Carl Mauer, Emily Musick, Lena Olson,
Erik Rubow, Michael Ryan, Kevin Springborn, Paul
Turner, Valas Valancius, Xi Wang, and Amin Vahdat.
“Snap: A Microkernel Approach to Host Networking”.
In: SOSP ’19. Association for Computing Machinery,
2019, pp. 399–413.

[28] Radhika Mittal, Vinh The Lam, Nandita Dukkipati,
Emily Blem, Hassan Wassel, Monia Ghobadi, Amin
Vahdat, Yaogong Wang, David Wetherall, and David
Zats. “TIMELY: RTT-Based Congestion Control for
the Datacenter”. In: SIGCOMM ’15. Association for
Computing Machinery, 2015, pp. 537–550.

[29] Radhika Mittal, Alexander Shpiner, Aurojit Panda, Ei-
tan Zahavi, Arvind Krishnamurthy, Sylvia Ratnasamy,
and Scott Shenker. “Revisiting Network Support for
RDMA”. In: SIGCOMM ’18. Association for Comput-
ing Machinery, 2018, pp. 313–326.

[30] Jeffrey C. Mogul. “TCP Offload is a Dumb Idea Whose
Time Has Come”. In: HOTOS’03. USENIX Associa-
tion, 2003, pp. 5–5.

[31] Behnam Montazeri, Yilong Li, Mohammad Alizadeh,
and John Ousterhout. “Homa: A Receiver-driven Low-
latency Transport Protocol Using Network Priorities”.
In: Special Interest Group on Data Communication
(SIGCOMM). ACM, 2018.

[32] p4.org Applications Working Group. In-band Network
Telemetry (INT) Dataplane Specification. 2020. URL:
https://github.com/p4lang/p4-applications/
blob/master/docs/INT_v2_1.pdf.

[33] Jonathan Perry, Amy Ousterhout, Hari Balakrishnan,
Devavrat Shah, and Hans Fugal. “Fastpass: A Central-
ized "Zero-queue" Datacenter Network”. In: Special
Interest Group on Data Communication (SIGCOMM).
ACM, 2014.

[34] Lucian Popa, Gautam Kumar, Mosharaf Chowdhury,
Arvind Krishnamurthy, Sylvia Ratnasamy, and Ion Sto-
ica. “FairCloud: Sharing the Network in Cloud Com-
puting”. In: SIGCOMM ’12. Association for Comput-
ing Machinery, 2012, pp. 187–198.

[35] Lucian Popa, Praveen Yalagandula, Sujata Banerjee,
Jeffrey C. Mogul, Yoshio Turner, and Jose Renato
Santos. “ElasticSwitch: Practical Work-Conserving
Bandwidth Guarantees for Cloud Computing”. In: SIG-
COMM ’13. Association for Computing Machinery,
2013, pp. 351–362.

[36] R. Ludwig and A. Gurtov. RFC4015: The Eifel Re-
sponse Algorithm for TCP. 2003. URL: https : / /
tools.ietf.org/html/rfc4015.

[37] R. Ludwig and M. Meyer. RFC3522: The Eifel Detec-
tion Algorithm for TCP. 2003. URL: https://tools.
ietf.org/html/rfc3522.

[38] Costin Raiciu, Sebastien Barre, Christopher Pluntke,
Adam Greenhalgh, Damon Wischik, and Mark Hand-
ley. “Improving Datacenter Performance and Robust-
ness with Multipath TCP”. In: Special Interest Group
on Data Communication (SIGCOMM). ACM, 2010.

[39] Mario Ruiz, David Sidler, Gustavo Sutter, Gustavo
Alonso, and Sergio López-Buedo. “Limago: An FPGA-
Based Open-Source 100 GbE TCP/IP Stack”. In: 2019
29th International Conference on Field Programmable
Logic and Applications (FPL). 2019, pp. 286–292.

[40] Alan Shieh, Srikanth Kandula, Albert Greenberg,
Changhoon Kim, and Bikas Saha. “Sharing the Data
Center Network”. In: NSDI’11. USENIX Association,
2011, pp. 309–322.

https://www.infinibandta.org/about-infiniband/
https://www.infinibandta.org/about-infiniband/
https://www.infinibandta.org/roce-initiative/
https://www.infinibandta.org/roce-initiative/
https://github.com/p4lang/p4-applications/blob/master/docs/INT_v2_1.pdf
https://github.com/p4lang/p4-applications/blob/master/docs/INT_v2_1.pdf
https://tools.ietf.org/html/rfc4015
https://tools.ietf.org/html/rfc4015
https://tools.ietf.org/html/rfc3522
https://tools.ietf.org/html/rfc3522

[41] David Sidler, Zeke Wang, Monica Chiosa, Amit Kulka-
rni, and Gustavo Alonso. “StRoM: Smart Remote
Memory”. In: EuroSys ’20. Association for Computing
Machinery, 2020.

[42] Arjun Singhvi, Aditya Akella, Dan Gibson, Thomas
F. Wenisch, Monica Wong-Chan, Sean Clark, Milo
M. K. Martin, Moray McLaren, Prashant Chandra, Rob
Cauble, Hassan M. G. Wassel, Behnam Montazeri,
Simon L. Sabato, Joel Scherpelz, and Amin Vahdat.
“1RMA: Re-Envisioning Remote Memory Access for
Multi-Tenant Datacenters”. In: SIGCOMM ’20. As-
sociation for Computing Machinery, 2020, pp. 708–
721.

[43] Anirudh Sivaraman, Suvinay Subramanian, Moham-
mad Alizadeh, Sharad Chole, Shang-Tse Chuang,
Anurag Agrawal, Hari Balakrishnan, Tom Edsall,
Sachin Katti, and Nick McKeown. “Programmable
Packet Scheduling at Line Rate”. In: SIGCOMM ’16.
Association for Computing Machinery, 2016, pp. 44–
57.

[44] Haitao Wu, Zhenqian Feng, Chuanxiong Guo, and
Yongguang Zhang. “ICTCP: Incast Congestion Con-
trol for TCP in Data-Center Networks”. In: IEEE/ACM
Trans. Netw. 21.2 (Apr. 2013), pp. 345–358.

Appendix A. Protocol state machines

The state machines for our protocol implementation are shown
in Figures 26 (the sender) and 27 (for the receiver).

The aim is for the two endpoints to self-synchronize. The
sender sets the SYN flag on all data packets sent until it
receives a SYN-ACK (or SYN-NACK or SYN-SACK) packet
from the receiver. As a window of SYN packets can arrive
out-of-order, the lowest ten bits of the sequence number are
always zero in the first SYN packet and the upper sequence
number bits in SYN packets indicate an epoch number.

The receiver state machine is very simple, with just two
states, closed and established. As SYNs from the initial
window can arrive out of order, an arriving SYN causes the
receiver to move to established state and set the initial se-
quence number to be that from the SYN with the lowest ten
bits cleared. Any subsequent SYNs with the same epoch num-
ber are treated as normal data packets except the SYN flag is
set in their ACKs.

When data arrives at the sender it chooses a random epoch
number, starts sending data with SYN set, and moves to SYN-
SENT state. It then moves to established state on receiving a
SYN-ACK with the correct epoch number from the receiver.

The epoch number is needed because either end can drop
state at any point. If a sender drops state very early in a
connection, then immediately tries to re-establish a tunnel,
old SYN packets may still be in flight. The epoch number
allows the sender and receiver to agree which is the new

connection.
If the sender retains the old epoch number, it simply

chooses a greater epoch for the new connection. The receiver
then accepts the new SYN as re-establishing the connection
seamlessly. However, if the sender has no state, it chooses a
random epoch number. If this random epoch number is greater
it will be accepted, but if it is lesser, the receiver concludes
it is old and replies with a SYN-ACK advertising its current
epoch. If the sender receives such a mismatched greater epoch
in a SYN-ACK, it concludes the setup has failed, chooses a
new epoch greater than that advertised by the receiver, and
resends its initial window of SYNs. This new attempt will
then always succeed.

It is possible that SYN-ACKs from the previous connection
are still in flight when the new connection is attempted. If
these have a lower epoch (the common case) they are ignored;
if they have a greater epoch they trigger the re-sync process
as described above.

If a receiver has outstanding data in its reorder queue when
a connected reestablishes, it releases this data to the host out-
of-order as it can no longer guarantee the sequence space
holes will be filled. This is expected to be very rare in practice
as endpoints will not normally drop state with unacked data
in transit.

The sender responds to any indication of an unhealthy
tunnel by closing it and re-establishing a new tunnel, possibly
after a timeout. A large number of retransmit timeouts implies
that there is likely a network connectivity issue affecting the
tunnel. Similarly, receipt of a RST indicates the receiver is in
the closed state, and prompts re-establishment of the tunnel
if there are packets in the EQIF TX queue.

The key benefit of this self-synchronizing design is that
either endpoint can drop state without reliably informing its
peer. This gives EQDS implementations a lot of freedom in
managing per-tunnel memory, allowing lightly used tunnels to
be dropped in memory pressure scenarios. While these ability
is not used in our software implementations, we expect that
future ASIC implementations of EQDS in NICs will make
full use of these features.

Appendix B. Details on the experiment setup.

Our T1 (TCP/IP) testbed has 10 endpoints:

• 8 Linux kernel endpoints emulated on four servers with
Intel Xeon Silver 4215 CPUs @ 2.50GHz (8 cores, 16
hyperthreads), 128GB of RAM and a dual-port 100Gbps
Intel Columbiaville NIC each (running in Setup 1, with
EQDS on the host cores either as part of the kernel or as a
DPDK process).

• 4 Broadcom endpoints emulated by two servers with In-
tel Xeo E5-2650L v2 CPUs @ 1.70GHz, 32GB of RAM
(10 cores, 20 hyperthreads), each with a dual-port 25Gbps

CLOSED

SYN-SENT

ESTABLISHED

Data in TX Queue / Send segment with SYN (first window)

FAIL RTX Count > MAX

RTX Timer / Resend missing segment
SYN+ ACK with greater epoch / Resend initial window
Unsolicited ctrl. packet / Resend initial window

OS command, Memory
Pressure, Inactivity, etc

SYN+(S/N)ACK

Notify OS -
Lack of
Connectivity

RTX Count > MAX
RTX Timer / Resend missing segment

Timer/Admin cmd.

SYN+ ACK with greater epoch / Send packet from
TX queue or RTS
Unsolicited ctrl. packet / Send packet from TX

queue or RTS
RST

Figure 26: EQDS sender state machine

CLOSED (unknown epoch)

Recv SYN+DATA / Send
SYN+(S/N)ACK

ESTABLISHED

Admin cmd. / Send RST
send all reorder queue packets to Host

Recv SYN from greater
epoch / Send
SYN+ACK, send all
reorder queue packets
to Host

Recv non-SYN
/ Send RST

Recv SYN from lesser
epoch / Send
SYN+ACK advertising
current epoch

Figure 27: EQDS receiver state machine

Broadcom Stingray NIC (EQDS is running on the Arm
cores of the Stingray, in Setup 2).

Each endpoint is connected via a 25Gbps link to a 64-port
Tofino 1 switch; we downgraded the Columbiaville NICs to
25Gbps to match the speed of the Stingray NICs. We im-
plemented packet trimming in the switch via a combination
of ingress meters and cloning sessions. We used the four
pipelines in this switch to emulate four ToR switches; these
are connected via DAC cables to two spine switches emulated
by another 32-port Tofino (one pipeline per emulated switch).
Switch buffers are set to 15 packets (125KB) for EQDS and
200 packets (2MB) for TCP. Cross-sectional bandwidth is
200Gbps (slight over-subscription).

We run the workload in our Linux machines with and with-
out EQDS, and measure performance using ping, iperf and
iperf3 for UDP tests. Our kernel and DPDK stacks interop-
erate and at 25Gbps have similar performance, so we omit a
performance breakdown.

Our T2 (RDMA) testbed has six endpoints, each with a
2.1GHz Intel Xeon E5-2620 v2 CPU. The hosts are con-
nected to an NVIDIA Spectrum SN3700 switch, configured
using loopback cables as a 2-tier Clos topology with 40 Gbps
bisectional bandwidth. All links are configured to 10 Gbps
with 4 KiB MTU. Each of six ports of the switch is connected
either to one of three dual-port 8-core NVIDIA BlueField-2
Smart NIC (two of which clock at 2.5 GHz and one at 2 GHz),
or to an NVIDIA Mellanox ConnectX-4 Lx.

We implement trimming in the SN3700 by mirroring and
truncating dropped frames, then sending them to a dedicated
loopback port where a P4 program redirects them back to the
destination port and appropriate queue. When trimming is
enabled, switch buffers are set to 60 kB.

When using ConnectX-4 Lx NICs, EQDS runs on the host
CPU instead of the SmartNIC, and traffic between the host
network stack and EQDS uses NIC loopback.

The baseline RDMA performance for SmartNICs is mea-
sured by configuring the SmartNICs to forward traffic be-
tween the host and the network in hardware, without going
through the ARM cores. For NICs, the host network stack
uses the RDMA NIC directly.

Buffer settings for TCP EQIFs. Our experiments show that
TCP/IP runs smoothly over EQDS with our default settings
(sending EQIFs buffer up to 100 packets per destination), but
does this change with other buffer sizes? Larger buffers simply
result in more EQDS sender-side buffering for TCP Cubic,
and do not affect performance at all. What about smaller
buffers?

When the send buffer is at least one BDP (30 packets in
our testbed), all TCP variants achieve line-rate; below that
the throughput depends on the congestion controller. DCTCP
maintains full utilization with K=16, while BBR needs half
that to reach line rate..

DCQCN parameter settings for the RDMA EQIF. Our
RDMA EQIF performs flow control using the NIC’s DC-
QCN implementation, but it has a shorter control loop than a
baseline DCQCN setup: it sends CNPs directly to the sender
NIC instead of simply marking packets and waiting for the
receiver to send CNPs. This allows more aggressive DCQCN
parameters to be used.

We explored the DCQCN parameter space, varying the
EQIF’s probabilistic marking thresholds (Klow/Khigh), active
increase rate (RAI) and rate increase/decrease timers (Rd /Ri).
Our goal was to be able to stop the RDMA sender quickly
during large incasts (1Mbps per sender) without dropping
packets, and to be able to resume at line rate (i.e. have enough
buffering) when an incast subsides (available rate is 25Gbps).
The resulting parameters, shown below, are as aggressive as
possible without under or overflowing the EQIF queue.

Klow Khigh Rd Ri RAI

Baseline 150 kB 1500 kB 4 µsec 300 µsec 5 Mbps
EQDS(BF2) 72 kB 584 kB 4 µsec 750 µsec 5 Mbps
EQDS(Cx4) 150 kB 1500 kB 4 µsec 128 µsec 50 Mbps

	Introduction
	Motivation
	Concept
	Design
	EQDS control loop

	Tunnel protocol
	Sending EQIF Specialization
	Implementation
	Evaluation
	Improving throughput
	Improving application latency
	Sharing the network
	EQDS in legacy networks
	Host processing evaluation for EQDS

	Related work
	Conclusions and next steps

